These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

401 related articles for article (PubMed ID: 21497607)

  • 1. Backbone-driven collapse in unfolded protein chains.
    Teufel DP; Johnson CM; Lum JK; Neuweiler H
    J Mol Biol; 2011 Jun; 409(2):250-62. PubMed ID: 21497607
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrogen-bond driven loop-closure kinetics in unfolded polypeptide chains.
    Daidone I; Neuweiler H; Doose S; Sauer M; Smith JC
    PLoS Comput Biol; 2010 Jan; 6(1):e1000645. PubMed ID: 20098498
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular dynamics simulations of a beta-hairpin fragment of protein G: balance between side-chain and backbone forces.
    Ma B; Nussinov R
    J Mol Biol; 2000 Mar; 296(4):1091-104. PubMed ID: 10686106
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Entropy-Enthalpy Compensations Fold Proteins in Precise Ways.
    Li J; Hou C; Ma X; Guo S; Zhang H; Shi L; Liao C; Zheng B; Ye L; Yang L; He X
    Int J Mol Sci; 2021 Sep; 22(17):. PubMed ID: 34502559
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NMR structural and dynamic characterization of the acid-unfolded state of apomyoglobin provides insights into the early events in protein folding.
    Yao J; Chung J; Eliezer D; Wright PE; Dyson HJ
    Biochemistry; 2001 Mar; 40(12):3561-71. PubMed ID: 11297422
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Site-Specific Backbone and Side-Chain Contributions to Thermodynamic Stabilizing Forces of the WW Domain.
    Cho MK; Chong SH; Shin S; Ham S
    J Phys Chem B; 2021 Jul; 125(26):7108-7116. PubMed ID: 34165991
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unfolded protein ensembles, folding trajectories, and refolding rate prediction.
    Das A; Sin BK; Mohazab AR; Plotkin SS
    J Chem Phys; 2013 Sep; 139(12):121925. PubMed ID: 24089737
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct analysis of backbone-backbone hydrogen bond formation in protein folding transition states.
    Yang X; Wang M; Fitzgerald MC
    J Mol Biol; 2006 Oct; 363(2):506-19. PubMed ID: 16963082
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unfolding simulations of the 85-102 beta-hairpin of barnase.
    Pugliese L; Prévost M; Wodak SJ
    J Mol Biol; 1995 Aug; 251(3):432-47. PubMed ID: 7650741
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using thioamides to site-specifically interrogate the dynamics of hydrogen bond formation in β-sheet folding.
    Culik RM; Jo H; DeGrado WF; Gai F
    J Am Chem Soc; 2012 May; 134(19):8026-9. PubMed ID: 22540162
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein folding: could hydrophobic collapse be coupled with hydrogen-bond formation?
    Fernández A; Kardos J; Goto Y
    FEBS Lett; 2003 Feb; 536(1-3):187-92. PubMed ID: 12586361
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Urea impedes the hydrophobic collapse of partially unfolded proteins.
    Stumpe MC; Grubmüller H
    Biophys J; 2009 May; 96(9):3744-52. PubMed ID: 19413980
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adding backbone to protein folding: why proteins are polypeptides.
    Honig B; Cohen FE
    Fold Des; 1996; 1(1):R17-20. PubMed ID: 9079357
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transient intermediary states with high and low folding probabilities in the apparent two-state folding equilibrium of ACBP at low pH.
    Thomsen JK; Kragelund BB; Teilum K; Knudsen J; Poulsen FM
    J Mol Biol; 2002 May; 318(3):805-14. PubMed ID: 12054824
    [TBL] [Abstract][Full Text] [Related]  

  • 15. From the Cover: Charge interactions can dominate the dimensions of intrinsically disordered proteins.
    Müller-Späth S; Soranno A; Hirschfeld V; Hofmann H; Rüegger S; Reymond L; Nettels D; Schuler B
    Proc Natl Acad Sci U S A; 2010 Aug; 107(33):14609-14. PubMed ID: 20639465
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How hydrophobicity, side chains, and salt affect the dimensions of disordered proteins.
    Baxa MC; Lin X; Mukinay CD; Chakravarthy S; Sachleben JR; Antilla S; Hartrampf N; Riback JA; Gagnon IA; Pentelute BL; Clark PL; Sosnick TR
    Protein Sci; 2024 May; 33(5):e4986. PubMed ID: 38607226
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein simulations with an optimized water model: cooperative helix formation and temperature-induced unfolded state collapse.
    Best RB; Mittal J
    J Phys Chem B; 2010 Nov; 114(46):14916-23. PubMed ID: 21038907
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mapping backbone and side-chain interactions in the transition state of a coupled protein folding and binding reaction.
    Bachmann A; Wildemann D; Praetorius F; Fischer G; Kiefhaber T
    Proc Natl Acad Sci U S A; 2011 Mar; 108(10):3952-7. PubMed ID: 21325613
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Entropic stabilization of proteins by TMAO.
    Cho SS; Reddy G; Straub JE; Thirumalai D
    J Phys Chem B; 2011 Nov; 115(45):13401-7. PubMed ID: 21985427
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein collapse driven against solvation free energy without H-bonds.
    Karandur D; Harris RC; Pettitt BM
    Protein Sci; 2016 Jan; 25(1):103-10. PubMed ID: 26174309
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.