These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
266 related articles for article (PubMed ID: 21497817)
1. Computational fluid dynamics analysis of drag and convective heat transfer of individual body segments for different cyclist positions. Defraeye T; Blocken B; Koninckx E; Hespel P; Carmeliet J J Biomech; 2011 Jun; 44(9):1695-701. PubMed ID: 21497817 [TBL] [Abstract][Full Text] [Related]
2. Aerodynamic study of different cyclist positions: CFD analysis and full-scale wind-tunnel tests. Defraeye T; Blocken B; Koninckx E; Hespel P; Carmeliet J J Biomech; 2010 May; 43(7):1262-8. PubMed ID: 20171640 [TBL] [Abstract][Full Text] [Related]
3. Cyclist drag in team pursuit: influence of cyclist sequence, stature, and arm spacing. Defraeye T; Blocken B; Koninckx E; Hespel P; Verboven P; Nicolai B; Carmeliet J J Biomech Eng; 2014 Jan; 136(1):011005. PubMed ID: 24149940 [TBL] [Abstract][Full Text] [Related]
4. Computational fluid dynamics analysis of cyclist aerodynamics: performance of different turbulence-modelling and boundary-layer modelling approaches. Defraeye T; Blocken B; Koninckx E; Hespel P; Carmeliet J J Biomech; 2010 Aug; 43(12):2281-7. PubMed ID: 20488446 [TBL] [Abstract][Full Text] [Related]
5. Aerodynamic study of time-trial helmets in cycling racing using CFD analysis. Beaumont F; Taiar R; Polidori G; Trenchard H; Grappe F J Biomech; 2018 Jan; 67():1-8. PubMed ID: 29150346 [TBL] [Abstract][Full Text] [Related]
6. Reference values and improvement of aerodynamic drag in professional cyclists. García-López J; Rodríguez-Marroyo JA; Juneau CE; Peleteiro J; Martínez AC; Villa JG J Sports Sci; 2008 Feb; 26(3):277-86. PubMed ID: 17943597 [TBL] [Abstract][Full Text] [Related]
7. Body mass scaling of frontal area in competitive cyclists not using aero-handlebars. Heil DP Eur J Appl Physiol; 2002 Oct; 87(6):520-8. PubMed ID: 12355191 [TBL] [Abstract][Full Text] [Related]
8. The influence of body mass in endurance bicycling. Swain DP Med Sci Sports Exerc; 1994 Jan; 26(1):58-63. PubMed ID: 8133740 [TBL] [Abstract][Full Text] [Related]
9. Convective and radiative heat transfer coefficients for individual human body segments. de Dear RJ; Arens E; Hui Z; Oguro M Int J Biometeorol; 1997 May; 40(3):141-56. PubMed ID: 9195861 [TBL] [Abstract][Full Text] [Related]
10. The Drag Crisis Phenomenon on an Elite Road Cyclist-A Preliminary Numerical Simulations Analysis in the Aero Position at Different Speeds. Forte P; Morais JE; P Neiva H; Barbosa TM; Marinho DA Int J Environ Res Public Health; 2020 Jul; 17(14):. PubMed ID: 32664605 [TBL] [Abstract][Full Text] [Related]
11. Consider a non-spherical elephant: computational fluid dynamics simulations of heat transfer coefficients and drag verified using wind tunnel experiments. Dudley PN; Bonazza R; Porter WP J Exp Zool A Ecol Genet Physiol; 2013 Jul; 319(6):319-27. PubMed ID: 23613217 [TBL] [Abstract][Full Text] [Related]
12. Aerodynamic investigation of the thermo-dependent flow structure in the wake of a cyclist. Beaumont F; Lestriez P; Estocq P; Taiar R; Grappe F; Polidori G J Biomech; 2019 Jan; 82():387-391. PubMed ID: 30477873 [TBL] [Abstract][Full Text] [Related]
13. New method to estimate the cycling frontal area. Debraux P; Bertucci W; Manolova AV; Rogier S; Lodini A Int J Sports Med; 2009 Apr; 30(4):266-72. PubMed ID: 19199206 [TBL] [Abstract][Full Text] [Related]
14. Cycling in the heat: performance perspectives and cerebral challenges. Nybo L Scand J Med Sci Sports; 2010 Oct; 20 Suppl 3():71-9. PubMed ID: 21029193 [TBL] [Abstract][Full Text] [Related]
15. The impact of arm-crank position on the drag of a paralympic hand-cyclist. Mannion P; Toparlar Y; Clifford E; Hajdukiewicz M; Andrianne T; Blocken B Comput Methods Biomech Biomed Engin; 2019 Mar; 22(4):386-395. PubMed ID: 30773039 [TBL] [Abstract][Full Text] [Related]
16. The effect of rowing headgear on forced convective heat loss and radiant heat gain on a thermal manikin headform. Bogerd CP; Brühwiler PA; Heus R J Sports Sci; 2008 May; 26(7):733-41. PubMed ID: 18409104 [TBL] [Abstract][Full Text] [Related]
17. Aerodynamics of cyclist posture, bicycle and helmet characteristics in time trial stage. Chabroux V; Barelle C; Favier D J Appl Biomech; 2012 Jul; 28(3):317-23. PubMed ID: 22084053 [TBL] [Abstract][Full Text] [Related]
18. The Aerodynamics and Energy Cost Assessment of an Able-Bodied Cyclist and Amputated Models by Computer Fluid Dynamics. Forte P; Marinho DA; Silveira R; Barbosa TM; Morais JE Medicina (Kaunas); 2020 May; 56(5):. PubMed ID: 32443646 [No Abstract] [Full Text] [Related]
19. Modeling sprint cycling using field-derived parameters and forward integration. Martin JC; Gardner AS; Barras M; Martin DT Med Sci Sports Exerc; 2006 Mar; 38(3):592-7. PubMed ID: 16540850 [TBL] [Abstract][Full Text] [Related]
20. A combined study of heat and mass transfer in an infant incubator with an overhead screen. Ginalski MK; Nowak AJ; Wrobel LC Med Eng Phys; 2007 Jun; 29(5):531-41. PubMed ID: 17030142 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]