BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 21497936)

  • 1. Genetic therapies for RNA mis-splicing diseases.
    Hammond SM; Wood MJ
    Trends Genet; 2011 May; 27(5):196-205. PubMed ID: 21497936
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Making antisense of splicing.
    Garcia-Blanco MA
    Curr Opin Mol Ther; 2005 Oct; 7(5):476-82. PubMed ID: 16248283
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DMD pseudoexon mutations: splicing efficiency, phenotype, and potential therapy.
    Gurvich OL; Tuohy TM; Howard MT; Finkel RS; Medne L; Anderson CB; Weiss RB; Wilton SD; Flanigan KM
    Ann Neurol; 2008 Jan; 63(1):81-9. PubMed ID: 18059005
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Target selection for antisense oligonucleotide induced exon skipping in the dystrophin gene.
    Errington SJ; Mann CJ; Fletcher S; Wilton SD
    J Gene Med; 2003 Jun; 5(6):518-27. PubMed ID: 12797117
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Towards a therapeutic inhibition of dystrophin exon 23 splicing in mdx mouse muscle induced by antisense oligoribonucleotides (splicomers): target sequence optimisation using oligonucleotide arrays.
    Graham IR; Hill VJ; Manoharan M; Inamati GB; Dickson G
    J Gene Med; 2004 Oct; 6(10):1149-58. PubMed ID: 15386737
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Doxycycline-controlled splicing modulation by regulated antisense U7 snRNA expression cassettes.
    Marquis J; Kämpfer SS; Angehrn L; Schümperli D
    Gene Ther; 2009 Jan; 16(1):70-7. PubMed ID: 18701908
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro splicing analysis showed that availability of a cryptic splice site is not a determinant for alternative splicing patterns caused by +1G-->A mutations in introns of the dystrophin gene.
    Habara Y; Takeshima Y; Awano H; Okizuka Y; Zhang Z; Saiki K; Yagi M; Matsuo M
    J Med Genet; 2009 Aug; 46(8):542-7. PubMed ID: 19001018
    [TBL] [Abstract][Full Text] [Related]  

  • 8. U1 snRNA as an effective vector for stable expression of antisense molecules and for the inhibition of the splicing reaction.
    Martone J; De Angelis FG; Bozzoni I
    Methods Mol Biol; 2012; 867():239-57. PubMed ID: 22454066
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Therapeutic modulation of DMD splicing by blocking exonic splicing enhancer sites with antisense oligonucleotides.
    Aartsma-Rus A; Janson AA; Heemskerk JA; De Winter CL; Van Ommen GJ; Van Deutekom JC
    Ann N Y Acad Sci; 2006 Oct; 1082():74-6. PubMed ID: 17145928
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rescue of dystrophic muscle through U7 snRNA-mediated exon skipping.
    Goyenvalle A; Vulin A; Fougerousse F; Leturcq F; Kaplan JC; Garcia L; Danos O
    Science; 2004 Dec; 306(5702):1796-9. PubMed ID: 15528407
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioinformatic and functional optimization of antisense phosphorodiamidate morpholino oligomers (PMOs) for therapeutic modulation of RNA splicing in muscle.
    Popplewell LJ; Graham IR; Malerba A; Dickson G
    Methods Mol Biol; 2011; 709():153-78. PubMed ID: 21194027
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Splice-switching antisense oligonucleotides as therapeutic drugs.
    Havens MA; Hastings ML
    Nucleic Acids Res; 2016 Aug; 44(14):6549-63. PubMed ID: 27288447
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Splicing intervention for Duchenne muscular dystrophy.
    McClorey G; Fletcher S; Wilton S
    Curr Opin Pharmacol; 2005 Oct; 5(5):529-34. PubMed ID: 16085461
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RNA modulation, repair and remodeling by splice switching oligonucleotides.
    Kole R; Williams T; Cohen L
    Acta Biochim Pol; 2004; 51(2):373-8. PubMed ID: 15218534
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antisense Oligonucleotide Therapy for Inherited Retinal Dystrophies.
    Gerard X; Garanto A; Rozet JM; Collin RW
    Adv Exp Med Biol; 2016; 854():517-24. PubMed ID: 26427454
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interference with splicing of Presenilin transcripts has potent dominant negative effects on Presenilin activity.
    Nornes S; Newman M; Verdile G; Wells S; Stoick-Cooper CL; Tucker B; Frederich-Sleptsova I; Martins R; Lardelli M
    Hum Mol Genet; 2008 Feb; 17(3):402-12. PubMed ID: 17981814
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of a complex Duchenne muscular dystrophy-causing dystrophin gene inversion and restoration of the reading frame by induced exon skipping.
    Madden HR; Fletcher S; Davis MR; Wilton SD
    Hum Mutat; 2009 Jan; 30(1):22-8. PubMed ID: 18570328
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Splicing-correcting therapeutic approaches for retinal dystrophies: where endogenous gene regulation and specificity matter.
    Bacchi N; Casarosa S; Denti MA
    Invest Ophthalmol Vis Sci; 2014 May; 55(5):3285-94. PubMed ID: 24867912
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimizing RNA/ENA chimeric antisense oligonucleotides using in vitro splicing.
    Takeshima Y; Yagi M; Matsuo M
    Methods Mol Biol; 2012; 867():131-41. PubMed ID: 22454059
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Can donor splice site recognition occur without the involvement of U1 snRNP?
    Raponi M; Baralle D
    Biochem Soc Trans; 2008 Jun; 36(Pt 3):548-50. PubMed ID: 18482005
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.