BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 21497995)

  • 1. Laboratory studies using naturally occurring "green rust" to aid metal mine water remediation.
    Bearcock JM; Perkins WT; Pearce NJ
    J Hazard Mater; 2011 Jun; 190(1-3):466-73. PubMed ID: 21497995
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Removal of some heavy metals by CKD leachate.
    Zaki NG; Khattab IA; Abd El-Monem NM
    J Hazard Mater; 2007 Aug; 147(1-2):21-7. PubMed ID: 17275181
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Remediation and selective recovery of metals from acidic mine waters using novel modular bioreactors.
    Hedrich S; Johnson DB
    Environ Sci Technol; 2014 Oct; 48(20):12206-12. PubMed ID: 25251612
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of iron and manganese minerals and their associated microbiota in different mine sites to reveal the potential interactions of microbiota with mineral formation.
    Park JH; Kim BS; Chon CM
    Chemosphere; 2018 Jan; 191():245-252. PubMed ID: 29035796
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Laboratory evaluation of zero-valent iron to treat water impacted by acid mine drainage.
    Wilkin RT; McNeil MS
    Chemosphere; 2003 Nov; 53(7):715-25. PubMed ID: 13129511
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of the potential of indigenous calcareous shale for neutralization and removal of arsenic and heavy metals from acid mine drainage in the Taxco mining area, Mexico.
    Romero FM; Núñez L; Gutiérrez ME; Armienta MA; Ceniceros-Gómez AE
    Arch Environ Contam Toxicol; 2011 Feb; 60(2):191-203. PubMed ID: 20523977
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of hydrology on heavy metal speciation and mobility in a Pb-Zn mine tailing.
    Kovács E; Dubbin WE; Tamás J
    Environ Pollut; 2006 May; 141(2):310-20. PubMed ID: 16219405
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A modular continuous flow reactor system for the selective bio-oxidation of iron and precipitation of schwertmannite from mine-impacted waters.
    Hedrich S; Johnson DB
    Bioresour Technol; 2012 Feb; 106():44-9. PubMed ID: 22197072
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selective recovery of dissolved Fe, Al, Cu, and Zn in acid mine drainage based on modeling to predict precipitation pH.
    Park SM; Yoo JC; Ji SW; Yang JS; Baek K
    Environ Sci Pollut Res Int; 2015 Feb; 22(4):3013-22. PubMed ID: 25231736
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of imposed anaerobic conditions on metals release from acid-mine drainage contaminated streambed sediments.
    Butler BA
    Water Res; 2011 Jan; 45(1):328-36. PubMed ID: 20709348
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biological manganese removal from acid mine drainage in constructed wetlands and prototype bioreactors.
    Hallberg KB; Johnson DB
    Sci Total Environ; 2005 Feb; 338(1-2):115-24. PubMed ID: 15680632
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Removal turbidity and separation of heavy metals using electrocoagulation-electroflotation technique A case study.
    Merzouk B; Gourich B; Sekki A; Madani K; Chibane M
    J Hazard Mater; 2009 May; 164(1):215-22. PubMed ID: 18799259
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sorption studies of Zn(II) and Cu(II) onto vegetal compost used on reactive mixtures for in situ treatment of acid mine drainage.
    Gibert O; de Pablo J; Cortina JL; Ayora C
    Water Res; 2005 Aug; 39(13):2827-38. PubMed ID: 15992854
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conversion of coal mine drainage ochre to water treatment reagent: Production, characterisation and application for P and Zn removal.
    Sapsford D; Santonastaso M; Thorn P; Kershaw S
    J Environ Manage; 2015 Sep; 160():7-15. PubMed ID: 26081304
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Abiotic reduction of antimony(V) by green rust (Fe(4)(II)Fe(2)(III)(OH)(12)SO(4).3H(2)O).
    Mitsunobu S; Takahashi Y; Sakai Y
    Chemosphere; 2008 Jan; 70(5):942-7. PubMed ID: 17761212
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low molecular weight carboxylic acids in oxidizing porphyry copper tailings.
    Dold B; Blowes DW; Dickhout R; Spangenberg JE; Pfeifer HR
    Environ Sci Technol; 2005 Apr; 39(8):2515-21. PubMed ID: 15884343
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of coal mining waste for the removal of acidity and metal ions Al (III), Fe (III) and Mn (II) in acid mine drainage.
    Geremias R; Laus R; Macan JM; Pedrosa RC; Laranjeira MC; Silvano J; Fávere FV
    Environ Technol; 2008 Aug; 29(8):863-9. PubMed ID: 18724641
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simultaneous removal of As, Cd, Cr, Cu, Ni and Zn from stormwater: experimental comparison of 11 different sorbents.
    Genç-Fuhrman H; Mikkelsen PS; Ledin A
    Water Res; 2007 Feb; 41(3):591-602. PubMed ID: 17173951
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sulfidogenic fluidized bed treatment of real acid mine drainage water.
    Sahinkaya E; Gunes FM; Ucar D; Kaksonen AH
    Bioresour Technol; 2011 Jan; 102(2):683-9. PubMed ID: 20832297
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A study on removal characteristics of heavy metals from aqueous solution by fly ash.
    Cho H; Oh D; Kim K
    J Hazard Mater; 2005 Dec; 127(1-3):187-95. PubMed ID: 16125307
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.