BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 21497996)

  • 1. Electrochemical oxidation of stabilized landfill leachate on DSA electrodes.
    Turro E; Giannis A; Cossu R; Gidarakos E; Mantzavinos D; Katsaounis A
    J Hazard Mater; 2011 Jun; 190(1-3):460-5. PubMed ID: 21497996
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reprint of: Electrochemical oxidation of stabilized landfill leachate on DSA electrodes.
    Turro E; Giannis A; Cossu R; Gidarakos E; Mantzavinos D; Katsaounis A
    J Hazard Mater; 2012 Mar; 207-208():73-8. PubMed ID: 22316689
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrochemical oxidation of model compounds and olive mill wastewater over DSA electrodes: 1. The case of Ti/IrO(2) anode.
    Chatzisymeon E; Dimou A; Mantzavinos D; Katsaounis A
    J Hazard Mater; 2009 Aug; 167(1-3):268-74. PubMed ID: 19188019
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrochemical degradation of phenol using electrodes of Ti/RuO(2)-Pt and Ti/IrO(2)-Pt.
    Li M; Feng C; Hu W; Zhang Z; Sugiura N
    J Hazard Mater; 2009 Feb; 162(1):455-62. PubMed ID: 18599203
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrochemical oxidation for landfill leachate treatment.
    Deng Y; Englehardt JD
    Waste Manag; 2007; 27(3):380-8. PubMed ID: 16632340
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization of electrochemical treatment of industrial paint wastewater with response surface methodology.
    Körbahti BK; Aktaş N; Tanyolaç A
    J Hazard Mater; 2007 Sep; 148(1-2):83-90. PubMed ID: 17374443
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Removal of COD from landfill leachate by electro-Fenton method.
    Zhang H; Zhang D; Zhou J
    J Hazard Mater; 2006 Jul; 135(1-3):106-11. PubMed ID: 16359785
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of response surface methodology to the removal of the antibiotic tetracycline by electrochemical process using carbon-felt cathode and DSA (Ti/RuO2-IrO2) anode.
    Wu J; Zhang H; Oturan N; Wang Y; Chen L; Oturan MA
    Chemosphere; 2012 May; 87(6):614-20. PubMed ID: 22342334
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrodegradation of landfill leachate in a flow electrochemical reactor.
    Moraes PB; Bertazzoli R
    Chemosphere; 2005 Jan; 58(1):41-6. PubMed ID: 15522331
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Treatment of landfill leachate by combined aged-refuse bioreactor and electro-oxidation.
    Lei Y; Shen Z; Huang R; Wang W
    Water Res; 2007 Jun; 41(11):2417-26. PubMed ID: 17434200
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Landfill leachate treatment by electrochemical oxidation.
    Bashir MJ; Isa MH; Kutty SR; Awang ZB; Aziz HA; Mohajeri S; Farooqi IH
    Waste Manag; 2009 Sep; 29(9):2534-41. PubMed ID: 19523802
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anodic oxidation of textile dyehouse effluents on boron-doped diamond electrode.
    Tsantaki E; Velegraki T; Katsaounis A; Mantzavinos D
    J Hazard Mater; 2012 Mar; 207-208():91-6. PubMed ID: 21530081
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Statistical optimization of process parameters for landfill leachate treatment using electro-Fenton technique.
    Mohajeri S; Aziz HA; Isa MH; Zahed MA; Adlan MN
    J Hazard Mater; 2010 Apr; 176(1-3):749-58. PubMed ID: 20022166
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Removal of o-nitrophenol from water by electrochemical degradation using a lead oxide/titanium modified electrode.
    Zaggout FR; Abu Ghalwa N
    J Environ Manage; 2008 Jan; 86(1):291-6. PubMed ID: 17287071
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrochemical oxidation of bisphenol-A from aqueous solution using graphite electrodes.
    Govindaraj M; Rathinam R; Sukumar C; Uthayasankar M; Pattabhi S
    Environ Technol; 2013; 34(1-4):503-11. PubMed ID: 23530365
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sulfate radical-advanced oxidation process (SR-AOP) for simultaneous removal of refractory organic contaminants and ammonia in landfill leachate.
    Deng Y; Ezyske CM
    Water Res; 2011 Nov; 45(18):6189-94. PubMed ID: 21959093
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of the central composite design for condition optimization for semi-aerobic landfill leachate treatment using electrochemical oxidation.
    Mohajeri S; Aziz HA; Isa MH; Zahed MA; Bashir MJ; Adlan MN
    Water Sci Technol; 2010; 61(5):1257-66. PubMed ID: 20220248
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of electrooxidation process for treating concentrated wastewater from distillery industry with a voluminous electrode.
    Piya-areetham P; Shenchunthichai K; Hunsom M
    Water Res; 2006 Aug; 40(15):2857-64. PubMed ID: 16843518
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxalic acid mineralization by electrochemical oxidation processes.
    Huang YH; Shih YJ; Liu CH
    J Hazard Mater; 2011 Apr; 188(1-3):188-92. PubMed ID: 21320749
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of electric potential, NaCl, pH and distance between electrodes on efficiency of electrolysis in landfill leachate treatment.
    Erabee IK; Ahsan A; Jose B; Arunkumar T; Sathyamurthy R; Idrus S; Daud NNN
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2017 Jul; 52(8):735-741. PubMed ID: 28471297
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.