BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 21498694)

  • 1. Microfluidic assembly of lipid-based oligonucleotide nanoparticles.
    Yu B; Zhu J; Xue W; Wu Y; Huang X; Lee LJ; Lee RJ
    Anticancer Res; 2011 Mar; 31(3):771-6. PubMed ID: 21498694
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfluidic assembly of lipid nanoparticles for delivery of antisense oligonucleotides.
    Zhou Y; Meng Z; Guo T; Fu Y; Lee RJ; Xie J
    Curr Pharm Biotechnol; 2014; 15(9):823-8. PubMed ID: 25335534
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single-step microfluidic synthesis of transferrin-conjugated lipid nanoparticles for siRNA delivery.
    Li Y; Lee RJ; Huang X; Li Y; Lv B; Wang T; Qi Y; Hao F; Lu J; Meng Q; Teng L; Zhou Y; Xie J; Teng L
    Nanomedicine; 2017 Feb; 13(2):371-381. PubMed ID: 27720989
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a Microfluidic-Based Post-Treatment Process for Size-Controlled Lipid Nanoparticles and Application to siRNA Delivery.
    Kimura N; Maeki M; Sato Y; Ishida A; Tani H; Harashima H; Tokeshi M
    ACS Appl Mater Interfaces; 2020 Jul; 12(30):34011-34020. PubMed ID: 32667806
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of Polymer-Lipid Nanoparticles by Microfluidic Focusing for siRNA Delivery.
    Li Y; Huang X; Lee RJ; Qi Y; Wang K; Hao F; Zhang Y; Lu J; Meng Q; Li S; Xie J; Teng L
    Molecules; 2016 Oct; 21(10):. PubMed ID: 27763492
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Elucidation of the physicochemical properties and potency of siRNA-loaded small-sized lipid nanoparticles for siRNA delivery.
    Sato Y; Note Y; Maeki M; Kaji N; Baba Y; Tokeshi M; Harashima H
    J Control Release; 2016 May; 229():48-57. PubMed ID: 26995758
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single pot organic solvent-free thermocycling technology for siRNA-ionizable LNPs: a proof-of-concept approach for alternative to microfluidics.
    De A; Ko YT
    Drug Deliv; 2022 Dec; 29(1):2644-2657. PubMed ID: 35949146
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrophobic scaffolds of pH-sensitive cationic lipids contribute to miscibility with phospholipids and improve the efficiency of delivering short interfering RNA by small-sized lipid nanoparticles.
    Sato Y; Okabe N; Note Y; Hashiba K; Maeki M; Tokeshi M; Harashima H
    Acta Biomater; 2020 Jan; 102():341-350. PubMed ID: 31733331
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfluidic hydrodynamic focusing synthesis of polymer-lipid nanoparticles for siRNA delivery.
    Huang X; Lee RJ; Qi Y; Li Y; Lu J; Meng Q; Teng L; Xie J
    Oncotarget; 2017 Nov; 8(57):96826-96836. PubMed ID: 29228574
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neutralization of negative charges of siRNA results in improved safety and efficient gene silencing activity of lipid nanoparticles loaded with high levels of siRNA.
    Sato Y; Matsui H; Sato R; Harashima H
    J Control Release; 2018 Aug; 284():179-187. PubMed ID: 29936118
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfluidic Production and Application of Lipid Nanoparticles for Nucleic Acid Transfection.
    Thomas A; M Garg S; De Souza RAG; Ouellet E; Tharmarajah G; Reichert D; Ordobadi M; Ip S; Ramsay EC
    Methods Mol Biol; 2018; 1792():193-203. PubMed ID: 29797261
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the size-regulation of RNA-loaded lipid nanoparticles synthesized by microfluidic device.
    Okuda K; Sato Y; Iwakawa K; Sasaki K; Okabe N; Maeki M; Tokeshi M; Harashima H
    J Control Release; 2022 Aug; 348():648-659. PubMed ID: 35716883
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polydispersity characterization of lipid nanoparticles for siRNA delivery using multiple detection size-exclusion chromatography.
    Zhang J; Haas RM; Leone AM
    Anal Chem; 2012 Jul; 84(14):6088-96. PubMed ID: 22816783
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formulating and Characterizing Lipid Nanoparticles for Gene Delivery using a Microfluidic Mixing Platform.
    Bailey-Hytholt CM; Ghosh P; Dugas J; Zarraga IE; Bandekar A
    J Vis Exp; 2021 Feb; (168):. PubMed ID: 33720139
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of the nanoformulation of siRNA-lipid assemblies on their cellular uptake and immune stimulation.
    Kubota K; Onishi K; Sawaki K; Li T; Mitsuoka K; Sato T; Takeoka S
    Int J Nanomedicine; 2017; 12():5121-5133. PubMed ID: 28790820
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Production of siRNA-Loaded Lipid Nanoparticles using a Microfluidic Device.
    Maeki M; Okada Y; Uno S; Niwa A; Ishida A; Tani H; Tokeshi M
    J Vis Exp; 2022 Mar; (181):. PubMed ID: 35404350
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lipid Nanoparticles Loaded with an Antisense Oligonucleotide Gapmer Against Bcl-2 for Treatment of Lung Cancer.
    Cheng X; Liu Q; Li H; Kang C; Liu Y; Guo T; Shang K; Yan C; Cheng G; Lee RJ
    Pharm Res; 2017 Feb; 34(2):310-320. PubMed ID: 27896589
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced Delivery of siRNA to Retinal Ganglion Cells by Intravitreal Lipid Nanoparticles of Positive Charge.
    Huang X; Chau Y
    Mol Pharm; 2021 Jan; 18(1):377-385. PubMed ID: 33295773
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of helper lipids in lipid nanoparticles (LNPs) designed for oligonucleotide delivery.
    Cheng X; Lee RJ
    Adv Drug Deliv Rev; 2016 Apr; 99(Pt A):129-137. PubMed ID: 26900977
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Effect of Size and Charge of Lipid Nanoparticles Prepared by Microfluidic Mixing on Their Lymph Node Transitivity and Distribution.
    Nakamura T; Kawai M; Sato Y; Maeki M; Tokeshi M; Harashima H
    Mol Pharm; 2020 Mar; 17(3):944-953. PubMed ID: 31990567
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.