These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 21498918)

  • 21. Mapping of genes determining nonpermissiveness and host-specific restriction to bacteriophages in Bacillus subtilis Marburg.
    Saito H; Shibata T; Ando T
    Mol Gen Genet; 1979 Feb; 170(2):117-22. PubMed ID: 107390
    [TBL] [Abstract][Full Text] [Related]  

  • 22. New Bacillus subtilis vector, pSSβ, as genetic tool for site-specific integration and excision of cloned DNA, and prophage elimination.
    Suzuki S; Osada S; Imamura D; Sato T
    J Gen Appl Microbiol; 2022 Sep; 68(2):71-78. PubMed ID: 35387911
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The arbitrium system controls prophage induction.
    Brady A; Quiles-Puchalt N; Gallego Del Sol F; Zamora-Caballero S; Felipe-Ruíz A; Val-Calvo J; Meijer WJJ; Marina A; Penadés JR
    Curr Biol; 2021 Nov; 31(22):5037-5045.e3. PubMed ID: 34562384
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization of a FourU RNA Thermometer in the 5' Untranslated Region of Autolysin Gene
    Tong AY; Caudill EE; Jones AR; F M Passalacqua L; Abdelsayed MM
    Biochemistry; 2023 Oct; 62(20):2902-2907. PubMed ID: 37699513
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molecular phylogeny of phi29-like phages and their evolutionary relatedness to other protein-primed replicating phages and other phages hosted by gram-positive bacteria.
    Pecenková T; Paces V
    J Mol Evol; 1999 Feb; 48(2):197-208. PubMed ID: 9929388
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Pervasive prophage recombination occurs during evolution of spore-forming Bacilli.
    Dragoš A; Priyadarshini B; Hasan Z; Strube ML; Kempen PJ; Maróti G; Kaspar C; Bose B; Burton BM; Bischofs IB; Kovács ÁT
    ISME J; 2021 May; 15(5):1344-1358. PubMed ID: 33343000
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Role of Ribonucleotide Reductase in Bacillus subtilis Stress-Associated Mutagenesis.
    Castro-Cerritos KV; Yasbin RE; Robleto EA; Pedraza-Reyes M
    J Bacteriol; 2017 Feb; 199(4):. PubMed ID: 27920297
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Global Transcriptional Analysis of Virus-Host Interactions between Phage ϕ29 and Bacillus subtilis.
    Mojardín L; Salas M
    J Virol; 2016 Oct; 90(20):9293-304. PubMed ID: 27489274
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chromosome DNA fragmentation and excretion caused by defective prophage gene expression in the early-exponential-phase culture of Bacillus subtilis.
    Shingaki R; Kasahara Y; Inoue T; Kokeguchi S; Fukui K
    Can J Microbiol; 2003 May; 49(5):313-25. PubMed ID: 12897825
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Complete nucleotide sequence of Bacillus subtilis (natto) bacteriophage PM1, a phage associated with disruption of food production.
    Umene K; Shiraishi A
    Virus Genes; 2013 Jun; 46(3):524-34. PubMed ID: 23315235
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Two self-splicing group I introns in the ribonucleotide reductase large subunit gene of Staphylococcus aureus phage Twort.
    Landthaler M; Begley U; Lau NC; Shub DA
    Nucleic Acids Res; 2002 May; 30(9):1935-43. PubMed ID: 11972330
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Is there a relic of a spliceosomal intron in Bacillus subtilis temperate phage SPbeta?
    Lazarevic V
    Mol Microbiol; 1998 Sep; 29(6):1523-6. PubMed ID: 9781889
    [No Abstract]   [Full Text] [Related]  

  • 33. Identification and characterization of integrated prophages and CRISPR-Cas system in Bacillus subtilis RS10 genome.
    Iqbal S; Begum F
    Braz J Microbiol; 2024 Mar; 55(1):537-542. PubMed ID: 38216797
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Cloning and analysis of prophage PBSX repressor gene from Bacillus subtilis].
    Li N; Chen Y; Feng J
    Yi Chuan Xue Bao; 1995; 22(6):478-86. PubMed ID: 8900842
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The Bacillus subtilis phage phi 29 protein p16.7, involved in phi 29 DNA replication, is a membrane-localized single-stranded DNA-binding protein.
    Serna-Rico A; Salas M; Meijer WJ
    J Biol Chem; 2002 Feb; 277(8):6733-42. PubMed ID: 11741949
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Glycoside hydrolase family 32 is present in Bacillus subtilis phages.
    Maaroufi H; Levesque RC
    Virol J; 2015 Oct; 12():157. PubMed ID: 26438422
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Virus evolution toward limited dependence on nonessential functions of the host: the case of bacteriophage SPP1.
    Cvirkaite-Krupovic V; Carballido-López R; Tavares P
    J Virol; 2015 Mar; 89(5):2875-83. PubMed ID: 25540376
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Revisited Genome of Bacillus subtilis Bacteriophage SPP1.
    Godinho LM; El Sadek Fadel M; Monniot C; Jakutyte L; Auzat I; Labarde A; Djacem K; Oliveira L; Carballido-Lopez R; Ayora S; Tavares P
    Viruses; 2018 Dec; 10(12):. PubMed ID: 30544981
    [No Abstract]   [Full Text] [Related]  

  • 39. Viral terminal protein directs early organization of phage DNA replication at the bacterial nucleoid.
    Muñoz-Espín D; Holguera I; Ballesteros-Plaza D; Carballido-López R; Salas M
    Proc Natl Acad Sci U S A; 2010 Sep; 107(38):16548-53. PubMed ID: 20823229
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An efficient expression and secretion system based on Bacillus subtilis phage phi 105 and its use for the production of B. cereus beta-lactamase I.
    Thornewell SJ; East AK; Errington J
    Gene; 1993 Oct; 133(1):47-53. PubMed ID: 8224893
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.