These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 21498923)

  • 1. A novel bioinformatics strategy for searching industrially useful genome resources from metagenomic sequence libraries.
    Uehara H; Iwasaki Y; Wada C; Ikemura T; Abe T
    Genes Genet Syst; 2011; 86(1):53-66. PubMed ID: 21498923
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Novel Bioinformatics Strategy to Analyze Microbial Big Sequence Data for Efficient Knowledge Discovery: Batch-Learning Self-Organizing Map (BLSOM).
    Iwasaki Y; Abe T; Wada K; Wada Y; Ikemura T
    Microorganisms; 2013 Nov; 1(1):137-157. PubMed ID: 27694768
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel bioinformatics method for efficient knowledge discovery by BLSOM from big genomic sequence data.
    Bai Y; Iwasaki Y; Kanaya S; Zhao Y; Ikemura T
    Biomed Res Int; 2014; 2014():765648. PubMed ID: 24804244
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel bioinformatics strategy for function prediction of poorly-characterized protein genes obtained from metagenome analyses.
    Abe T; Kanaya S; Uehara H; Ikemura T
    DNA Res; 2009 Oct; 16(5):287-97. PubMed ID: 19801558
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An artificial intelligence approach fit for tRNA gene studies in the era of big sequence data.
    Iwasaki Y; Abe T; Wada K; Wada Y; Ikemura T
    Genes Genet Syst; 2017 Sep; 92(1):43-54. PubMed ID: 28344190
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimating the composition of species in metagenomes by clustering of next-generation read sequences.
    Seok HS; Hong W; Kim J
    Methods; 2014 Oct; 69(3):213-9. PubMed ID: 25072168
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A strategy for predicting gene functions from genome and metagenome sequences on the basis of oligopeptide frequency distance.
    Abe T; Ikarashi R; Mizoguchi M; Otake M; Ikemura T
    Genes Genet Syst; 2020 Apr; 95(1):11-19. PubMed ID: 32161228
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Notable clustering of transcription-factor-binding motifs in human pericentric regions and its biological significance.
    Iwasaki Y; Wada K; Wada Y; Abe T; Ikemura T
    Chromosome Res; 2013 Aug; 21(5):461-74. PubMed ID: 23896648
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of self-compressing BLSOM for comprehensive analysis of big sequence data.
    Kikuchi A; Ikemura T; Abe T
    Biomed Res Int; 2015; 2015():506052. PubMed ID: 26495297
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PlasFlow: predicting plasmid sequences in metagenomic data using genome signatures.
    Krawczyk PS; Lipinski L; Dziembowski A
    Nucleic Acids Res; 2018 Apr; 46(6):e35. PubMed ID: 29346586
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of metagenomic samples using sequence signatures.
    Jiang B; Song K; Ren J; Deng M; Sun F; Zhang X
    BMC Genomics; 2012 Dec; 13():730. PubMed ID: 23268604
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Removing contaminants from databases of draft genomes.
    Lu J; Salzberg SL
    PLoS Comput Biol; 2018 Jun; 14(6):e1006277. PubMed ID: 29939994
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [A review on the bioinformatics pipelines for metagenomic research].
    Ye DD; Fan MM; Guan Q; Chen HJ; Ma ZS
    Dongwuxue Yanjiu; 2012 Dec; 33(6):574-85. PubMed ID: 23266976
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Construction of small-insert and large-insert metagenomic libraries.
    Simon C; Daniel R
    Methods Mol Biol; 2010; 668():39-50. PubMed ID: 20830554
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of k-mer spectrum applicability for metagenomic dissimilarity analysis.
    Dubinkina VB; Ischenko DS; Ulyantsev VI; Tyakht AV; Alexeev DG
    BMC Bioinformatics; 2016 Jan; 17():38. PubMed ID: 26774270
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of Substrate-Induced Gene Expression in Metagenomic Analysis of an Aromatic Hydrocarbon-Contaminated Soil.
    Meier MJ; Paterson ES; Lambert IB
    Appl Environ Microbiol; 2016 Feb; 82(3):897-909. PubMed ID: 26590287
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metagenome Skimming of Insect Specimen Pools: Potential for Comparative Genomics.
    Linard B; Crampton-Platt A; Gillett CP; Timmermans MJ; Vogler AP
    Genome Biol Evol; 2015 May; 7(6):1474-89. PubMed ID: 25979752
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasmid detection and assembly in genomic and metagenomic data sets.
    Antipov D; Raiko M; Lapidus A; Pevzner PA
    Genome Res; 2019 Jun; 29(6):961-968. PubMed ID: 31048319
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Search Engine for Antimicrobial Resistance: A Cloud Compatible Pipeline and Web Interface for Rapidly Detecting Antimicrobial Resistance Genes Directly from Sequence Data.
    Rowe W; Baker KS; Verner-Jeffreys D; Baker-Austin C; Ryan JJ; Maskell D; Pearce G
    PLoS One; 2015; 10(7):e0133492. PubMed ID: 26197475
    [TBL] [Abstract][Full Text] [Related]  

  • 20. AI for the collective analysis of a massive number of genome sequences: various examples from the small genome of pandemic SARS-CoV-2 to the human genome.
    Ikemura T; Iwasaki Y; Wada K; Wada Y; Abe T
    Genes Genet Syst; 2021 Dec; 96(4):165-176. PubMed ID: 34565757
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.