These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 21499417)

  • 1. Synthesis of fluorapatite-hydroxyapatite nanoparticles and toxicity investigations.
    Montazeri N; Jahandideh R; Biazar E
    Int J Nanomedicine; 2011; 6():197-201. PubMed ID: 21499417
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of high purity hydroxyapatite nanopowder via sol-gel combustion process.
    Wang J; Shaw LL
    J Mater Sci Mater Med; 2009 Jun; 20(6):1223-7. PubMed ID: 19132503
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Facile synthesis of both needle-like and spherical hydroxyapatite nanoparticles: effect of synthetic temperature and calcination on morphology, crystallite size and crystallinity.
    Wijesinghe WP; Mantilaka MM; Premalal EV; Herath HM; Mahalingam S; Edirisinghe M; Rajapakse RP; Rajapakse RM
    Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():83-90. PubMed ID: 25063096
    [TBL] [Abstract][Full Text] [Related]  

  • 4. One- and three-dimensional growth of hydroxyapatite nanowires during sol-gel-hydrothermal synthesis.
    Costa DO; Dixon SJ; Rizkalla AS
    ACS Appl Mater Interfaces; 2012 Mar; 4(3):1490-9. PubMed ID: 22296410
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of aging temperature on formation of sol-gel derived fluor-hydroxyapatite nanoparticles.
    Joughehdoust S; Behnamghader A; Jahandideh R; Manafi S
    J Nanosci Nanotechnol; 2010 Apr; 10(4):2892-6. PubMed ID: 20355519
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydroxyapatite, fluor-hydroxyapatite and fluorapatite produced via the sol-gel method. Optimisation, characterisation and rheology.
    Tredwin CJ; Young AM; Georgiou G; Shin SH; Kim HW; Knowles JC
    Dent Mater; 2013 Feb; 29(2):166-73. PubMed ID: 23218445
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Growth of hydroxyapatite nanoparticles on silica gels.
    Rivera-Muñoz EM; Huirache-Acuña R; Velázquez R; Alonso-Núñez G; Eguía-Eguía S
    J Nanosci Nanotechnol; 2011 Jun; 11(6):5592-8. PubMed ID: 21770224
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydroxyapatite-TiO(2)-based nanocomposites synthesized in supercritical CO(2) for bone tissue engineering: physical and mechanical properties.
    Salarian M; Xu WZ; Wang Z; Sham TK; Charpentier PA
    ACS Appl Mater Interfaces; 2014 Oct; 6(19):16918-31. PubMed ID: 25184699
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of synthetic apatites by solid-state reactions.
    Fazan F; Shahida KB
    Med J Malaysia; 2004 May; 59 Suppl B():69-70. PubMed ID: 15468823
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro study of hydroxyapatite/polycaprolactone (HA/PCL) nanocomposite synthesized by an in situ sol-gel process.
    Rezaei A; Mohammadi MR
    Mater Sci Eng C Mater Biol Appl; 2013 Jan; 33(1):390-6. PubMed ID: 25428086
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel route for synthesis of nanocrystalline hydroxyapatite from eggshell waste.
    Siva Rama Krishna D; Siddharthan A; Seshadri SK; Sampath Kumar TS
    J Mater Sci Mater Med; 2007 Sep; 18(9):1735-43. PubMed ID: 17483877
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystallized nano-sized alpha-tricalcium phosphate from amorphous calcium phosphate: microstructure, cementation and cell response.
    Vecbiskena L; Gross KA; Riekstina U; Yang TC
    Biomed Mater; 2015 Apr; 10(2):025009. PubMed ID: 25886478
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro study on different cell response to spherical hydroxyapatite nanoparticles.
    Qiang Fu ; Rahaman MN; Nai Zhou ; Wenhai Huang ; Deping Wang ; Liying Zhang ; Haifeng Li
    J Biomater Appl; 2008 Jul; 23(1):37-50. PubMed ID: 18194997
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel route for rapid sol-gel synthesis of hydroxyapatite, avoiding ageing and using fast drying with a 50-fold to 200-fold reduction in process time.
    Ben-Arfa BA; Salvado IM; Ferreira JM; Pullar RC
    Mater Sci Eng C Mater Biol Appl; 2017 Jan; 70(Pt 1):796-804. PubMed ID: 27770957
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydroxyapatite nanocrystals: simple preparation, characterization and formation mechanism.
    Mohandes F; Salavati-Niasari M; Fathi M; Fereshteh Z
    Mater Sci Eng C Mater Biol Appl; 2014 Dec; 45():29-36. PubMed ID: 25491798
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanocomposites of bacterial cellulose/hydroxyapatite for biomedical applications.
    Grande CJ; Torres FG; Gomez CM; Bañó MC
    Acta Biomater; 2009 Jun; 5(5):1605-15. PubMed ID: 19246264
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spherical N-carboxyethylchitosan/hydroxyapatite nanoparticles prepared by ionic diffusion process in a controlled manner.
    Zhu A; Lu Y; Zhou Y; Dai S
    J Mater Sci Mater Med; 2010 Dec; 21(12):3095-101. PubMed ID: 20890642
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of hydroxyapatite particle size, morphology and crystallinity on proliferation of colon cancer HCT116 cells.
    Dey S; Das M; Balla VK
    Mater Sci Eng C Mater Biol Appl; 2014 Jun; 39():336-9. PubMed ID: 24863233
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis and characterisation of nanohydroxyapatite using an ultrasound assisted method.
    Poinern GE; Brundavanam RK; Mondinos N; Jiang ZT
    Ultrason Sonochem; 2009 Apr; 16(4):469-74. PubMed ID: 19232507
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis and characterization of hydroxyapatite, fluoride-substituted hydroxyapatite and fluorapatite.
    Wei M; Evans JH; Bostrom T; Grøndahl L
    J Mater Sci Mater Med; 2003 Apr; 14(4):311-20. PubMed ID: 15348455
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.