These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 21499548)

  • 1. Time-dependent and outflow boundary conditions for Dissipative Particle Dynamics.
    Lei H; Fedosov DA; Karniadakis GE
    J Comput Phys; 2011 May; 230(10):3765-377. PubMed ID: 21499548
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A phase-field approach to no-slip boundary conditions in dissipative particle dynamics and other particle models for fluid flow in geometrically complex confined systems.
    Xu Z; Meakin P
    J Chem Phys; 2009 Jun; 130(23):234103. PubMed ID: 19548707
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Consistent lattice Boltzmann modeling of low-speed isothermal flows at finite Knudsen numbers in slip-flow regime. II. Application to curved boundaries.
    Silva G
    Phys Rev E; 2018 Aug; 98(2-1):023302. PubMed ID: 30253480
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling of Knudsen Layer Effects in the Micro-Scale Backward-Facing Step in the Slip Flow Regime.
    Bhagat A; Gijare H; Dongari N
    Micromachines (Basel); 2019 Feb; 10(2):. PubMed ID: 30759853
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unified slip boundary condition for fluid flows.
    Thalakkottor JJ; Mohseni K
    Phys Rev E; 2016 Aug; 94(2-1):023113. PubMed ID: 27627398
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A mesoscopic bridging scale method for fluids and coupling dissipative particle dynamics with continuum finite element method.
    Kojic M; Filipovic N; Tsuda A
    Comput Methods Appl Mech Eng; 2013 Jan; 197(6-8):821-833. PubMed ID: 23814322
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of inlet and outlet boundary conditions in image-based CFD modeling of aortic flow.
    Madhavan S; Kemmerling EMC
    Biomed Eng Online; 2018 May; 17(1):66. PubMed ID: 29843730
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mass-conserved volumetric lattice Boltzmann method for complex flows with willfully moving boundaries.
    Yu H; Chen X; Wang Z; Deep D; Lima E; Zhao Y; Teague SD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):063304. PubMed ID: 25019909
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generalized second-order slip boundary condition for nonequilibrium gas flows.
    Guo Z; Qin J; Zheng C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):013021. PubMed ID: 24580334
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dissipative particle dynamics simulation of flow generated by two rotating concentric cylinders: boundary conditions.
    Haber S; Filipovic N; Kojic M; Tsuda A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Oct; 74(4 Pt 2):046701. PubMed ID: 17155206
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Corrected second-order slip boundary condition for fluid flows in nanochannels.
    Zhang H; Zhang Z; Zheng Y; Ye H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jun; 81(6 Pt 2):066303. PubMed ID: 20866518
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anisotropic particle in viscous shear flow: Navier slip, reciprocal symmetry, and Jeffery orbit.
    Zhang J; Xu X; Qian T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):033016. PubMed ID: 25871211
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling the combined effect of surface roughness and shear rate on slip flow of simple fluids.
    Niavarani A; Priezjev NV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 1):011606. PubMed ID: 20365383
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical simulation of particulate flows using a hybrid of finite difference and boundary integral methods.
    Bhattacharya A; Kesarkar T
    Phys Rev E; 2016 Oct; 94(4-1):043309. PubMed ID: 27841548
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hybrid smoothed dissipative particle dynamics and immersed boundary method for simulation of red blood cells in flows.
    Ye T; Phan-Thien N; Lim CT; Peng L; Shi H
    Phys Rev E; 2017 Jun; 95(6-1):063314. PubMed ID: 28709282
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrodynamic slip boundary condition at chemically patterned surfaces: a continuum deduction from molecular dynamics.
    Qian T; Wang XP; Sheng P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Aug; 72(2 Pt 1):022501. PubMed ID: 16196615
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Force-amplified, single-sided diffused-interface immersed boundary kernel for correct local velocity gradient computation and accurate no-slip boundary enforcement.
    Peng C; Wang LP
    Phys Rev E; 2020 May; 101(5-1):053305. PubMed ID: 32575257
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Consistent lattice Boltzmann modeling of low-speed isothermal flows at finite Knudsen numbers in slip-flow regime: Application to plane boundaries.
    Silva G; Semiao V
    Phys Rev E; 2017 Jul; 96(1-1):013311. PubMed ID: 29347253
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tunable-slip boundaries for coarse-grained simulations of fluid flow.
    Smiatek J; Allen MP; Schmid F
    Eur Phys J E Soft Matter; 2008; 26(1-2):115-22. PubMed ID: 18425408
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controlling density fluctuations in wall-bounded dissipative particle dynamics systems.
    Pivkin IV; Karniadakis GE
    Phys Rev Lett; 2006 May; 96(20):206001. PubMed ID: 16803187
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.