These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 21499676)

  • 1. A chemical signal generator for resolving temporal dynamics of single cells.
    Sun J; Wang J; Chen P; Feng X; Du W; Liu BF
    Anal Bioanal Chem; 2011 Jul; 400(9):2973-81. PubMed ID: 21499676
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A microfluidic platform with pneumatically switchable single-cell traps for selective intracellular signals probing.
    Wang Y; Zhu J; Chen P; Hu L; Feng X; Du W; Liu BF
    Talanta; 2019 Jan; 192():431-438. PubMed ID: 30348414
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a microfluidic cell-based biosensor integrating a millisecond chemical pulse generator.
    Sun J; Chen P; Feng X; Du W; Liu BF
    Biosens Bioelectron; 2011 Apr; 26(8):3413-9. PubMed ID: 21334189
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A rapid microfluidic switching system for analysis at the single cellular level.
    Yamada A; Katanosaka Y; Mohri S; Naruse K
    IEEE Trans Nanobioscience; 2009 Dec; 8(4):306-11. PubMed ID: 20142146
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of intercellular communication by flexible hydrodynamic gating on a microfluidic chip.
    Chen P; Chen P; Feng X; Du W; Liu BF
    Anal Bioanal Chem; 2013 Jan; 405(1):307-14. PubMed ID: 23052886
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Universal signal generator for dynamic cell stimulation.
    Piehler A; Ghorashian N; Zhang C; Tay S
    Lab Chip; 2017 Jun; 17(13):2218-2224. PubMed ID: 28573304
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of intercellular calcium signaling using microfluidic adjustable laminar flow for localized chemical stimulation.
    Sun J; Zheng Y; Feng X; Du W; Liu BF
    Anal Chim Acta; 2012 Apr; 721():104-9. PubMed ID: 22405307
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidic chip-based C. elegans microinjection system for investigating cell-cell communication in vivo.
    Zhao X; Xu F; Tang L; Du W; Feng X; Liu BF
    Biosens Bioelectron; 2013 Dec; 50():28-34. PubMed ID: 23831644
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A microfluidic array device for single cell capture and intracellular Ca2+ response analysis induced by dynamic biochemical stimulus.
    Wei W; Zhang M; Xu Z; Li W; Cheng L; Cao H; Ma M; Chen Z
    Biosci Rep; 2021 Jul; 41(7):. PubMed ID: 34269374
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A sharp-edge-based acoustofluidic chemical signal generator.
    Huang PH; Chan CY; Li P; Wang Y; Nama N; Bachman H; Huang TJ
    Lab Chip; 2018 May; 18(10):1411-1421. PubMed ID: 29668002
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measurement of surface-mediated Ca2+ transients on the single-cell level in a microfluidic lab-on-a-chip environment.
    Kirschbaum M; Jaeger MS; Duschl C
    Methods Mol Biol; 2015; 1272():247-56. PubMed ID: 25563189
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfluidic Chemical Cytometry for Enzyme Assays of Single Cells.
    Shehaj L; Lazo de la Vega L; Kovarik ML
    Methods Mol Biol; 2015; 1346():221-38. PubMed ID: 26542725
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An automated programmable platform enabling multiplex dynamic stimuli delivery and cellular response monitoring for high-throughput suspension single-cell signaling studies.
    He L; Kniss A; San-Miguel A; Rouse T; Kemp ML; Lu H
    Lab Chip; 2015 Mar; 15(6):1497-507. PubMed ID: 25609410
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Label-Free Imaging of Dynamic and Transient Calcium Signaling in Single Cells.
    Lu J; Li J
    Angew Chem Int Ed Engl; 2015 Nov; 54(46):13576-80. PubMed ID: 26337802
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Capture and enumeration of mRNA transcripts from single cells using a microfluidic device.
    Walsh MT; Hsiao AP; Lee HS; Liu Z; Huang X
    Lab Chip; 2015 Jul; 15(14):2968-80. PubMed ID: 26040942
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-throughput single-cell quantification using simple microwell-based cell docking and programmable time-course live-cell imaging.
    Park MC; Hur JY; Cho HS; Park SH; Suh KY
    Lab Chip; 2011 Jan; 11(1):79-86. PubMed ID: 20957290
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monitoring the intracellular calcium response to a dynamic hypertonic environment.
    Huang X; Yue W; Liu D; Yue J; Li J; Sun D; Yang M; Wang Z
    Sci Rep; 2016 Mar; 6():23591. PubMed ID: 27004604
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A microfluidic digital single-cell assay for the evaluation of anticancer drugs.
    Wang Y; Tang X; Feng X; Liu C; Chen P; Chen D; Liu BF
    Anal Bioanal Chem; 2015 Feb; 407(4):1139-48. PubMed ID: 25433683
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-cell trapping and selective treatment via co-flow within a microfluidic platform.
    Benavente-Babace A; Gallego-Pérez D; Hansford DJ; Arana S; Pérez-Lorenzo E; Mujika M
    Biosens Bioelectron; 2014 Nov; 61():298-305. PubMed ID: 24907537
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfluidic technology for investigation of protein function in single adherent cells.
    Jesorka A; Põldsalu I; Gözen I
    Methods Enzymol; 2019; 628():145-172. PubMed ID: 31668227
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.