BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

303 related articles for article (PubMed ID: 21499765)

  • 1. Mammalian target of rapamycin as a target in hematological malignancies.
    Kelly KR; Rowe JH; Padmanabhan S; Nawrocki ST; Carew JS
    Target Oncol; 2011 Mar; 6(1):53-61. PubMed ID: 21499765
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeting the PI3K/AKT/mTOR signaling axis in children with hematologic malignancies.
    Barrett D; Brown VI; Grupp SA; Teachey DT
    Paediatr Drugs; 2012 Oct; 14(5):299-316. PubMed ID: 22845486
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Catalytic mammalian target of rapamycin inhibitors as antineoplastic agents.
    Mohindra NA; Platanias LC
    Leuk Lymphoma; 2015; 56(9):2518-23. PubMed ID: 25747970
    [TBL] [Abstract][Full Text] [Related]  

  • 4. mTOR kinase inhibitors as a treatment strategy in hematological malignancies.
    Grzybowska-Izydorczyk O; Smolewski P
    Future Med Chem; 2012 Mar; 4(4):487-504. PubMed ID: 22416776
    [TBL] [Abstract][Full Text] [Related]  

  • 5. m-TOR inhibitors and their potential role in haematological malignancies.
    Calimeri T; Ferreri AJM
    Br J Haematol; 2017 Jun; 177(5):684-702. PubMed ID: 28146265
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of the phosphatidylinositol 3-kinase/mammalian target of rapamycin pathway in hematologic malignancies.
    Witzig TE; Kaufmann SH
    Curr Treat Options Oncol; 2006 Jul; 7(4):285-94. PubMed ID: 16916489
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanisms of mTOR inhibitor resistance in cancer therapy.
    Carew JS; Kelly KR; Nawrocki ST
    Target Oncol; 2011 Mar; 6(1):17-27. PubMed ID: 21547705
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distinct signaling mechanisms of mTORC1 and mTORC2 in glioblastoma multiforme: a tale of two complexes.
    Jhanwar-Uniyal M; Gillick JL; Neil J; Tobias M; Thwing ZE; Murali R
    Adv Biol Regul; 2015 Jan; 57():64-74. PubMed ID: 25442674
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mammalian target of rapamycin as a target in hematological malignancies.
    Abdel-Karim IA; Giles FJ
    Curr Probl Cancer; 2008; 32(4):161-77. PubMed ID: 18655914
    [No Abstract]   [Full Text] [Related]  

  • 10. The emerging role of mammalian target of rapamycin inhibitors in the treatment of sarcomas.
    Vemulapalli S; Mita A; Alvarado Y; Sankhala K; Mita M
    Target Oncol; 2011 Mar; 6(1):29-39. PubMed ID: 21533543
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Emerging roles for mammalian target of rapamycin inhibitors in the treatment of solid tumors and hematological malignancies.
    Khokhar NZ; Altman JK; Platanias LC
    Curr Opin Oncol; 2011 Nov; 23(6):578-86. PubMed ID: 21892085
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New targets for therapy in breast cancer: mammalian target of rapamycin (mTOR) antagonists.
    Carraway H; Hidalgo M
    Breast Cancer Res; 2004; 6(5):219-24. PubMed ID: 15318929
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The phosphatidylinositol 3-kinase/Akt/mTOR signaling network as a therapeutic target in acute myelogenous leukemia patients.
    Martelli AM; Evangelisti C; Chiarini F; McCubrey JA
    Oncotarget; 2010 Jun; 1(2):89-103. PubMed ID: 20671809
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Current status and challenges associated with targeting mTOR for cancer therapy.
    Dowling RJ; Pollak M; Sonenberg N
    BioDrugs; 2009; 23(2):77-91. PubMed ID: 19489650
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent clinical trials of mTOR-targeted cancer therapies.
    Don AS; Zheng XF
    Rev Recent Clin Trials; 2011 Jan; 6(1):24-35. PubMed ID: 20868343
    [TBL] [Abstract][Full Text] [Related]  

  • 16. mTOR in renal cell cancer: modulator of tumor biology and therapeutic target.
    Wysocki PJ
    Expert Rev Mol Diagn; 2009 Apr; 9(3):231-41. PubMed ID: 19379082
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mammalian target of rapamycin: discovery of rapamycin reveals a signaling pathway important for normal and cancer cell growth.
    Gibbons JJ; Abraham RT; Yu K
    Semin Oncol; 2009 Dec; 36 Suppl 3():S3-S17. PubMed ID: 19963098
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic and pharmacologic evidence that mTOR targeting outweighs mTORC1 inhibition as an antimyeloma strategy.
    Chen X; Díaz-Rodríguez E; Ocio EM; Paiva B; Mortensen DS; Lopez-Girona A; Chopra R; Miguel JS; Pandiella A
    Mol Cancer Ther; 2014 Feb; 13(2):504-16. PubMed ID: 24431075
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Concurrent inhibition of PI3K and mTORC1/mTORC2 overcomes resistance to rapamycin induced apoptosis by down-regulation of Mcl-1 in mantle cell lymphoma.
    Müller A; Zang C; Chumduri C; Dörken B; Daniel PT; Scholz CW
    Int J Cancer; 2013 Oct; 133(8):1813-24. PubMed ID: 23580240
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Involvement of mTORC1 and mTORC2 in regulation of glioblastoma multiforme growth and motility.
    Gulati N; Karsy M; Albert L; Murali R; Jhanwar-Uniyal M
    Int J Oncol; 2009 Oct; 35(4):731-40. PubMed ID: 19724909
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.