These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 21500072)

  • 1. Hybrid artificial neural network genetic algorithm technique for modeling chemical oxygen demand removal in anoxic/oxic process.
    Ma Y; Huang M; Wan J; Hu K; Wang Y; Zhang H
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2011; 46(6):574-80. PubMed ID: 21500072
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A fuzzy neural network model for monitoring A²/O process using on-line monitoring parameters.
    Hu K; Wan JQ; Ma YW; Wang Y; Huang MZ
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2012; 47(5):744-54. PubMed ID: 22416869
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sequential modelling of a full-scale wastewater treatment plant using an artificial neural network.
    Lee JW; Suh C; Hong YS; Shin HS
    Bioprocess Biosyst Eng; 2011 Oct; 34(8):963-73. PubMed ID: 21533792
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A hybrid genetic--neural algorithm for modeling the biodegradation process of DnBP in AAO system.
    Huang M; Ma Y; Wan J; Zhang H; Wang Y; Chen Y; Yoo C; Guo W
    Bioresour Technol; 2011 Oct; 102(19):8907-13. PubMed ID: 21824769
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced removal of chemical oxygen demand, nitrogen and phosphorus using the ameliorative anoxic/anaerobic/oxic process and micro-electrolysis.
    Bao KQ; Gao JQ; Wang ZB; Zhang RQ; Zhang ZY; Sugiura N
    Water Sci Technol; 2012; 66(4):850-7. PubMed ID: 22766877
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phytoremediation of palm oil mill secondary effluent (POMSE) by Chrysopogon zizanioides (L.) using artificial neural networks.
    Darajeh N; Idris A; Fard Masoumi HR; Nourani A; Truong P; Rezania S
    Int J Phytoremediation; 2017 May; 19(5):413-424. PubMed ID: 27748626
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Artificial neural network modelling of a large-scale wastewater treatment plant operation.
    Güçlü D; Dursun S
    Bioprocess Biosyst Eng; 2010 Nov; 33(9):1051-8. PubMed ID: 20445993
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The use of artificial neural network (ANN) for modeling of COD removal from antibiotic aqueous solution by the Fenton process.
    Elmolla ES; Chaudhuri M; Eltoukhy MM
    J Hazard Mater; 2010 Jul; 179(1-3):127-34. PubMed ID: 20307930
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Online soft measurement method for chemical oxygen demand based on CNN-BiLSTM-Attention algorithm.
    Liu L; Tian X; Ma Y; Lu W; Luo Y
    PLoS One; 2024; 19(6):e0305216. PubMed ID: 38941339
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Soil aquifer treatment of artificial wastewater under saturated conditions.
    Essandoh HM; Tizaoui C; Mohamed MH; Amy G; Brdjanovic D
    Water Res; 2011 Aug; 45(14):4211-26. PubMed ID: 21700308
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The development of a reverse anammox sequencing partial nitrification process for simultaneous nitrogen and COD removal from wastewater.
    Xu X; Xue Y; Wang D; Wang G; Yang F
    Bioresour Technol; 2014 Mar; 155():427-31. PubMed ID: 24468323
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monitoring of anoxic/oxic process for nitrogen and chemical oxygen demand removal using fuzzy neural networks.
    Huang M; Wan J; Ma Y
    Water Environ Res; 2009 Jul; 81(7):654-63. PubMed ID: 19691245
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of artificial neural network black-box modeling for the prediction of wastewater treatment plants performance.
    Mjalli FS; Al-Asheh S; Alfadala HE
    J Environ Manage; 2007 May; 83(3):329-38. PubMed ID: 16806660
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modelling of COD removal in a biological wastewater treatment plant using adaptive neuro-fuzzy inference system and artificial neural network.
    Civelekoglu G; Yigit NO; Diamadopoulos E; Kitis M
    Water Sci Technol; 2009; 60(6):1475-87. PubMed ID: 19759450
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving neural network prediction of effluent from biological wastewater treatment plant of industrial park using fuzzy learning approach.
    Pai TY; Wang SC; Chiang CF; Su HC; Yu LF; Sung PJ; Lin CY; Hu HC
    Bioprocess Biosyst Eng; 2009 Oct; 32(6):781-90. PubMed ID: 19253022
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancement of phosphorus removal in a low temperature A(2)/O process by anaerobic phosphorus release of activated sludge.
    Li J; Jin Y; Guo Y; He J
    Water Sci Technol; 2013; 67(11):2437-43. PubMed ID: 23752374
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of effluent removal prediction model efficiency in septic sludge treatment plant through clonal selection algorithm.
    Ting SC; Ismail AR; Malek MA
    J Environ Manage; 2013 Nov; 129():260-5. PubMed ID: 23968912
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contaminant removal performances on domestic sewage using modified anoxic/anaerobic/oxic process and micro-electrolysis.
    Zhou J; Gao J; Liu Y; Xiao S; Zhang R; Zhang Z
    Environ Technol; 2013; 34(17-20):2773-9. PubMed ID: 24527641
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A membrane bioreactor for an innovative biological nitrogen removal process.
    Chen W; Sun FY; Wang XM; Li XY
    Water Sci Technol; 2010; 61(3):671-6. PubMed ID: 20150703
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction and quantifying parameter importance in simultaneous anaerobic sulfide and nitrate removal process using artificial neural network.
    Cai J; Zheng P; Qaisar M; Luo T
    Environ Sci Pollut Res Int; 2015 Jun; 22(11):8272-9. PubMed ID: 25523291
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.