These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
346 related articles for article (PubMed ID: 21500191)
1. Farnesylthiosalicylic acid (salirasib) inhibits Rheb in TSC2-null ELT3 cells: a potential treatment for lymphangioleiomyomatosis. Makovski V; Haklai R; Kloog Y Int J Cancer; 2012 Mar; 130(6):1420-9. PubMed ID: 21500191 [TBL] [Abstract][Full Text] [Related]
2. Analysis of gene expression array in TSC2-deficient AML cells reveals IRF7 as a pivotal factor in the Rheb/mTOR pathway. Makovski V; Jacob-Hirsch J; Gefen-Dor C; Shai B; Ehrlich M; Rechavi G; Kloog Y Cell Death Dis; 2014 Dec; 5(12):e1557. PubMed ID: 25476905 [TBL] [Abstract][Full Text] [Related]
3. Selective inhibition of growth of tuberous sclerosis complex 2 null cells by atorvastatin is associated with impaired Rheb and Rho GTPase function and reduced mTOR/S6 kinase activity. Finlay GA; Malhowski AJ; Liu Y; Fanburg BL; Kwiatkowski DJ; Toksoz D Cancer Res; 2007 Oct; 67(20):9878-86. PubMed ID: 17942919 [TBL] [Abstract][Full Text] [Related]
4. Rheb activates AMPK and reduces p27Kip1 levels in Tsc2-null cells via mTORC1-independent mechanisms: implications for cell proliferation and tumorigenesis. Lacher MD; Pincheira R; Zhu Z; Camoretti-Mercado B; Matli M; Warren RS; Castro AF Oncogene; 2010 Dec; 29(50):6543-56. PubMed ID: 20818424 [TBL] [Abstract][Full Text] [Related]
5. Tuberous sclerosis complex gene products, Tuberin and Hamartin, control mTOR signaling by acting as a GTPase-activating protein complex toward Rheb. Tee AR; Manning BD; Roux PP; Cantley LC; Blenis J Curr Biol; 2003 Aug; 13(15):1259-68. PubMed ID: 12906785 [TBL] [Abstract][Full Text] [Related]
7. Frequent [corrected] hyperphosphorylation of ribosomal protein S6 [corrected] in lymphangioleiomyomatosis-associated angiomyolipomas. Robb VA; Astrinidis A; Henske EP Mod Pathol; 2006 Jun; 19(6):839-46. PubMed ID: 16575396 [TBL] [Abstract][Full Text] [Related]
8. Biochemical and functional characterizations of small GTPase Rheb and TSC2 GAP activity. Li Y; Inoki K; Guan KL Mol Cell Biol; 2004 Sep; 24(18):7965-75. PubMed ID: 15340059 [TBL] [Abstract][Full Text] [Related]
9. Measurements of TSC2 GAP activity toward Rheb. Li Y; Inoki K; Vikis H; Guan KL Methods Enzymol; 2006; 407():46-54. PubMed ID: 16757313 [TBL] [Abstract][Full Text] [Related]
10. Rheb is a direct target of the tuberous sclerosis tumour suppressor proteins. Zhang Y; Gao X; Saucedo LJ; Ru B; Edgar BA; Pan D Nat Cell Biol; 2003 Jun; 5(6):578-81. PubMed ID: 12771962 [TBL] [Abstract][Full Text] [Related]
11. The mTOR/S6K signalling pathway: the role of the TSC1/2 tumour suppressor complex and the proto-oncogene Rheb. Nobukini T; Thomas G Novartis Found Symp; 2004; 262():148-54; discussion 154-9, 265-8. PubMed ID: 15562827 [TBL] [Abstract][Full Text] [Related]
12. Differential requirement of CAAX-mediated posttranslational processing for Rheb localization and signaling. Hanker AB; Mitin N; Wilder RS; Henske EP; Tamanoi F; Cox AD; Der CJ Oncogene; 2010 Jan; 29(3):380-91. PubMed ID: 19838215 [TBL] [Abstract][Full Text] [Related]
13. Farnesyltransferase inhibitors reverse altered growth and distribution of actin filaments in Tsc-deficient cells via inhibition of both rapamycin-sensitive and -insensitive pathways. Gau CL; Kato-Stankiewicz J; Jiang C; Miyamoto S; Guo L; Tamanoi F Mol Cancer Ther; 2005 Jun; 4(6):918-26. PubMed ID: 15956249 [TBL] [Abstract][Full Text] [Related]
14. Loss of tuberous sclerosis complex 1 (Tsc1) expression results in increased Rheb/S6K pathway signaling important for astrocyte cell size regulation. Uhlmann EJ; Li W; Scheidenhelm DK; Gau CL; Tamanoi F; Gutmann DH Glia; 2004 Aug; 47(2):180-8. PubMed ID: 15185396 [TBL] [Abstract][Full Text] [Related]
15. Non-canonical functions of the tuberous sclerosis complex-Rheb signalling axis. Neuman NA; Henske EP EMBO Mol Med; 2011 Apr; 3(4):189-200. PubMed ID: 21412983 [TBL] [Abstract][Full Text] [Related]
16. Structure of the Tuberous Sclerosis Complex 2 (TSC2) N Terminus Provides Insight into Complex Assembly and Tuberous Sclerosis Pathogenesis. Zech R; Kiontke S; Mueller U; Oeckinghaus A; Kümmel D J Biol Chem; 2016 Sep; 291(38):20008-20. PubMed ID: 27493206 [TBL] [Abstract][Full Text] [Related]
17. Rapamycin-insensitive up-regulation of MMP2 and other genes in tuberous sclerosis complex 2-deficient lymphangioleiomyomatosis-like cells. Lee PS; Tsang SW; Moses MA; Trayes-Gibson Z; Hsiao LL; Jensen R; Squillace R; Kwiatkowski DJ Am J Respir Cell Mol Biol; 2010 Feb; 42(2):227-34. PubMed ID: 19395678 [TBL] [Abstract][Full Text] [Related]
18. Rapamycin-insensitive up-regulation of adipocyte phospholipase A2 in tuberous sclerosis and lymphangioleiomyomatosis. Li C; Zhang E; Sun Y; Lee PS; Zhan Y; Guo Y; Osorio JC; Rosas IO; Xu KF; Kwiatkowski DJ; Yu JJ PLoS One; 2014; 9(10):e104809. PubMed ID: 25347447 [TBL] [Abstract][Full Text] [Related]
19. Statins in lymphangioleiomyomatosis. Simvastatin and atorvastatin induce differential effects on tuberous sclerosis complex 2-null cell growth and signaling. Atochina-Vasserman EN; Goncharov DA; Volgina AV; Milavec M; James ML; Krymskaya VP Am J Respir Cell Mol Biol; 2013 Nov; 49(5):704-9. PubMed ID: 23947572 [TBL] [Abstract][Full Text] [Related]
20. Urokinase-type plasminogen activator (uPA) is critical for progression of tuberous sclerosis complex 2 (TSC2)-deficient tumors. Stepanova V; Dergilev KV; Holman KR; Parfyonova YV; Tsokolaeva ZI; Teter M; Atochina-Vasserman EN; Volgina A; Zaitsev SV; Lewis SP; Zabozlaev FG; Obraztsova K; Krymskaya VP; Cines DB J Biol Chem; 2017 Dec; 292(50):20528-20543. PubMed ID: 28972182 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]