BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 21500210)

  • 1. Fiber-free coupling between bulk laser beams and on-chip polymer-based multimode waveguides.
    Jensen TG; Nielsen LB; Kutter JP
    Electrophoresis; 2011 May; 32(10):1224-32. PubMed ID: 21500210
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfabricated polymer chip with integrated U-bend waveguides for evanescent field absorption based detection.
    Prabhakar A; Mukherji S
    Lab Chip; 2010 Mar; 10(6):748-54. PubMed ID: 20221563
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical microflow cytometer based on external total reflection.
    Fu LM; Wang YN
    Electrophoresis; 2012 Nov; 33(21):3229-35. PubMed ID: 22949332
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A compact optofluidic cytometer with integrated liquid-core/PDMS-cladding waveguides.
    Fei P; Chen Z; Men Y; Li A; Shen Y; Huang Y
    Lab Chip; 2012 Oct; 12(19):3700-6. PubMed ID: 22699406
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection of unlabeled particles in the low micrometer size range using light scattering and hydrodynamic 3D focusing in a microfluidic system.
    Zhuang G; Jensen TG; Kutter JP
    Electrophoresis; 2012 Jul; 33(12):1715-22. PubMed ID: 22740459
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measurements of scattered light on a microchip flow cytometer with integrated polymer based optical elements.
    Wang Z; El-Ali J; Engelund M; Gotsaed T; Perch-Nielsen IR; Mogensen KB; Snakenborg D; Kutter JP; Wolff A
    Lab Chip; 2004 Aug; 4(4):372-7. PubMed ID: 15269807
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfluidic chips for the crystallization of biomacromolecules by counter-diffusion and on-chip crystal X-ray analysis.
    Dhouib K; Khan Malek C; Pfleging W; Gauthier-Manuel B; Duffait R; Thuillier G; Ferrigno R; Jacquamet L; Ohana J; Ferrer JL; Théobald-Dietrich A; Giegé R; Lorber B; Sauter C
    Lab Chip; 2009 May; 9(10):1412-21. PubMed ID: 19417908
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Microflow Cytometer Based on a Disposable Microfluidic Chip With Side Scatter and Fluorescence Detection Capability.
    Xun W; Feng J; Chang H
    IEEE Trans Nanobioscience; 2015 Dec; 14(8):850-6. PubMed ID: 26415206
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Disposable flow cytometer with high efficiency in particle counting and sizing using an optofluidic lens.
    Song C; Luong TD; Kong TF; Nguyen NT; Asundi AK
    Opt Lett; 2011 Mar; 36(5):657-9. PubMed ID: 21368939
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flexible planar microfluidic chip employing a light emitting diode and a PIN-photodiode for portable flow cytometers.
    Kettlitz SW; Valouch S; Sittel W; Lemmer U
    Lab Chip; 2012 Jan; 12(1):197-203. PubMed ID: 22086498
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PDMS 2D optical lens integrated with microfluidic channels: principle and characterization.
    Camou S; Fujita H; Fujii T
    Lab Chip; 2003 Feb; 3(1):40-5. PubMed ID: 15100804
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bead-based immunoassays using a micro-chip flow cytometer.
    Holmes D; She JK; Roach PL; Morgan H
    Lab Chip; 2007 Aug; 7(8):1048-56. PubMed ID: 17653348
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Silicon chip-based patch-clamp electrodes integrated with PDMS microfluidics.
    Pantoja R; Nagarah JM; Starace DM; Melosh NA; Blunck R; Bezanilla F; Heath JR
    Biosens Bioelectron; 2004 Oct; 20(3):509-17. PubMed ID: 15494233
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid prototyping of PDMS devices using SU-8 lithography.
    Jenkins G
    Methods Mol Biol; 2013; 949():153-68. PubMed ID: 23329442
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single-layer planar on-chip flow cytometer using microfluidic drifting based three-dimensional (3D) hydrodynamic focusing.
    Mao X; Lin SC; Dong C; Huang TJ
    Lab Chip; 2009 Jun; 9(11):1583-9. PubMed ID: 19458866
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single-step replication of a highly integrated PDMS optofluidic analysis system.
    Amberg M; Stoebenau S; Sinzinger S
    Appl Opt; 2010 Aug; 49(22):4326-30. PubMed ID: 20676190
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A simple method for preparation of macroporous polydimethylsiloxane membrane for microfluidic chip-based isoelectric focusing applications.
    Ou J; Ren CL; Pawliszyn J
    Anal Chim Acta; 2010 Mar; 662(2):200-5. PubMed ID: 20171320
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microfluidic chip accomplishing self-fluid replacement using only capillary force and its bioanalytical application.
    Chung KH; Hong JW; Lee DS; Yoon HC
    Anal Chim Acta; 2007 Feb; 585(1):1-10. PubMed ID: 17386640
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integration of optical fiber light guide, fluorescence detection system, and multichannel disposable microfluidic chip.
    Irawan R; Tjin SC; Fang X; Fu CY
    Biomed Microdevices; 2007 Jun; 9(3):413-9. PubMed ID: 17473985
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fully integrated PDMS/SU-8/quartz microfluidic chip with a novel macroporous poly dimethylsiloxane (PDMS) membrane for isoelectric focusing of proteins using whole-channel imaging detection.
    Shameli SM; Elbuken C; Ou J; Ren CL; Pawliszyn J
    Electrophoresis; 2011 Feb; 32(3-4):333-9. PubMed ID: 21298660
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.