These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
410 related articles for article (PubMed ID: 21500214)
1. Interdigitated comb-like electrodes for continuous separation of malignant cells from blood using dielectrophoresis. Alazzam A; Stiharu I; Bhat R; Meguerditchian AN Electrophoresis; 2011 Jun; 32(11):1327-36. PubMed ID: 21500214 [TBL] [Abstract][Full Text] [Related]
2. Dual frequency dielectrophoresis with interdigitated sidewall electrodes for microfluidic flow-through separation of beads and cells. Wang L; Lu J; Marchenko SA; Monuki ES; Flanagan LA; Lee AP Electrophoresis; 2009 Mar; 30(5):782-91. PubMed ID: 19197906 [TBL] [Abstract][Full Text] [Related]
3. Continuous separation of breast cancer cells from blood samples using multi-orifice flow fractionation (MOFF) and dielectrophoresis (DEP). Moon HS; Kwon K; Kim SI; Han H; Sohn J; Lee S; Jung HI Lab Chip; 2011 Mar; 11(6):1118-25. PubMed ID: 21298159 [TBL] [Abstract][Full Text] [Related]
4. Lab-on-a-chip device for continuous particle and cell separation based on electrical properties via alternating current dielectrophoresis. Cetin B; Li D Electrophoresis; 2010 Sep; 31(18):3035-43. PubMed ID: 20872609 [TBL] [Abstract][Full Text] [Related]
5. Novel microfluidic device for the continuous separation of cancer cells using dielectrophoresis. Alazzam A; Mathew B; Alhammadi F J Sep Sci; 2017 Mar; 40(5):1193-1200. PubMed ID: 28035792 [TBL] [Abstract][Full Text] [Related]
6. Automatic microfluidic platform for cell separation and nucleus collection. Tai CH; Hsiung SK; Chen CY; Tsai ML; Lee GB Biomed Microdevices; 2007 Aug; 9(4):533-43. PubMed ID: 17508288 [TBL] [Abstract][Full Text] [Related]
7. Lateral fluid flow fractionation using dielectrophoresis (LFFF-DEP) for size-independent, label-free isolation of circulating tumor cells. Waheed W; Alazzam A; Mathew B; Christoforou N; Abu-Nada E J Chromatogr B Analyt Technol Biomed Life Sci; 2018 Jun; 1087-1088():133-137. PubMed ID: 29734073 [TBL] [Abstract][Full Text] [Related]
8. The integration of 3D carbon-electrode dielectrophoresis on a CD-like centrifugal microfluidic platform. Martinez-Duarte R; Gorkin RA; Abi-Samra K; Madou MJ Lab Chip; 2010 Apr; 10(8):1030-43. PubMed ID: 20358111 [TBL] [Abstract][Full Text] [Related]
9. Selective concentration of human cancer cells using contactless dielectrophoresis. Henslee EA; Sano MB; Rojas AD; Schmelz EM; Davalos RV Electrophoresis; 2011 Sep; 32(18):2523-9. PubMed ID: 21922494 [TBL] [Abstract][Full Text] [Related]
10. Isolation of rare cancer cells from blood cells using dielectrophoresis. Salmanzadeh A; Sano MB; Shafiee H; Stremler MA; Davalos RV Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():590-3. PubMed ID: 23365961 [TBL] [Abstract][Full Text] [Related]
11. Antibody-free isolation of rare cancer cells from blood based on 3D lateral dielectrophoresis. Cheng IF; Huang WL; Chen TY; Liu CW; Lin YD; Su WC Lab Chip; 2015 Jul; 15(14):2950-9. PubMed ID: 26085231 [TBL] [Abstract][Full Text] [Related]
12. A new design for efficient dielectrophoretic separation of cells in a microdevice. Jubery TZ; Dutta P Electrophoresis; 2013 Mar; 34(5):643-50. PubMed ID: 23255020 [TBL] [Abstract][Full Text] [Related]
13. Continuous separation of cells by balanced dielectrophoretic forces at multiple frequencies. Braschler T; Demierre N; Nascimento E; Silva T; Oliva AG; Renaud P Lab Chip; 2008 Feb; 8(2):280-6. PubMed ID: 18231667 [TBL] [Abstract][Full Text] [Related]
14. Lateral-driven continuous dielectrophoretic microseparators for blood cells suspended in a highly conductive medium. Han KH; Frazier AB Lab Chip; 2008 Jul; 8(7):1079-86. PubMed ID: 18584082 [TBL] [Abstract][Full Text] [Related]
15. Integrated AC electrokinetic cell separation in a closed-loop device. Gagnon Z; Mazur J; Chang HC Lab Chip; 2010 Mar; 10(6):718-26. PubMed ID: 20221559 [TBL] [Abstract][Full Text] [Related]
16. Microfluidic devices for the isolation of circulating rare cells: a focus on affinity-based, dielectrophoresis, and hydrophoresis. Hyun KA; Jung HI Electrophoresis; 2013 Apr; 34(7):1028-41. PubMed ID: 23436295 [TBL] [Abstract][Full Text] [Related]
17. Contactless dielectrophoresis: a new technique for cell manipulation. Shafiee H; Caldwell JL; Sano MB; Davalos RV Biomed Microdevices; 2009 Oct; 11(5):997-1006. PubMed ID: 19415498 [TBL] [Abstract][Full Text] [Related]
18. Lectin-aided separation of circulating tumor cells and assay of their response to an anticancer drug in an integrated microfluidic device. Li L; Liu W; Wang J; Tu Q; Liu R; Wang J Electrophoresis; 2010 Sep; 31(18):3159-66. PubMed ID: 20872615 [TBL] [Abstract][Full Text] [Related]
19. DC-Dielectrophoretic separation of biological cells by size. Kang Y; Li D; Kalams SA; Eid JE Biomed Microdevices; 2008 Apr; 10(2):243-9. PubMed ID: 17899384 [TBL] [Abstract][Full Text] [Related]
20. Label-free enumeration of colorectal cancer cells from lymphocytes performed at a high cell-loading density by using interdigitated ring-array microelectrodes. Xing X; Poon RY; Wong CS; Yobas L Biosens Bioelectron; 2014 Nov; 61():434-42. PubMed ID: 24934744 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]