These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

368 related articles for article (PubMed ID: 21500758)

  • 1. Analysis of wall shear stress around a competitive swimmer using 3D Navier-Stokes equations in CFD.
    Popa CV; Zaidi H; Arfaoui A; Polidori G; Taiar R; Fohanno S
    Acta Bioeng Biomech; 2011; 13(1):3-11. PubMed ID: 21500758
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Numerical streamline patterns at swimmer's surface using RANS equations.
    Arfaoui A; Popa CV; Taïar R; Polidori G; Fohanno S
    J Appl Biomech; 2012 Jul; 28(3):279-83. PubMed ID: 21975086
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Turbulence model choice for the calculation of drag forces when using the CFD method.
    Zaïdi H; Fohanno S; Taïar R; Polidori G
    J Biomech; 2010 Feb; 43(3):405-11. PubMed ID: 19889420
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational fluid dynamics vs. inverse dynamics methods to determine passive drag in two breaststroke glide positions.
    Costa L; Mantha VR; Silva AJ; Fernandes RJ; Marinho DA; Vilas-Boas JP; Machado L; Rouboa A
    J Biomech; 2015 Jul; 48(10):2221-6. PubMed ID: 26087879
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the suitability of steady RANS CFD for forced mixing ventilation at transitional slot Reynolds numbers.
    van Hooff T; Blocken B; van Heijst GJ
    Indoor Air; 2013 Jun; 23(3):236-49. PubMed ID: 23094648
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrodynamic body shape analysis and their impact on swimming performance.
    Li TZ; Zhan JM
    Acta Bioeng Biomech; 2015; 17(4):3-11. PubMed ID: 26898107
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The accuracy of computational fluid dynamics analysis of the passive drag of a male swimmer.
    Bixler B; Pease D; Fairhurst F
    Sports Biomech; 2007 Jan; 6(1):81-98. PubMed ID: 17542180
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of swimmer's hand/forearm acceleration on propulsive forces generation using computational fluid dynamics.
    Rouboa A; Silva A; Leal L; Rocha J; Alves F
    J Biomech; 2006; 39(7):1239-48. PubMed ID: 15950980
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of the effect of swimmer's head position on swimming performance using computational fluid dynamics.
    Zaïdi H; Taïar R; Fohanno S; Polidori G
    J Biomech; 2008; 41(6):1350-8. PubMed ID: 18374343
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Large eddy simulation in a rotary blood pump: Viscous shear stress computation and comparison with unsteady Reynolds-averaged Navier-Stokes simulation.
    Torner B; Konnigk L; Hallier S; Kumar J; Witte M; Wurm FH
    Int J Artif Organs; 2018 Nov; 41(11):752-763. PubMed ID: 29898615
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of a postural change of the swimmer's head in hydrodynamic performances using 3D CFD.
    Popa CV; Arfaoui A; Fohanno S; Taïar R; Polidori G
    Comput Methods Biomech Biomed Engin; 2014; 17(4):344-51. PubMed ID: 22587390
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrodynamic analysis of human swimming based on VOF method.
    Zhan JM; Li TZ; Chen XB; Li YS
    Comput Methods Biomech Biomed Engin; 2017 May; 20(6):645-652. PubMed ID: 28127994
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparative study of manhole hydraulics using stereoscopic PIV and different RANS models.
    Beg MNA; Carvalho RF; Tait S; Brevis W; Rubinato M; Schellart A; Leandro J
    Water Sci Technol; 2017 Apr; 2017(1):87-98. PubMed ID: 29698224
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational fluid dynamics study of swimmer's hand velocity, orientation, and shape: contributions to hydrodynamics.
    Bilinauskaite M; Mantha VR; Rouboa AI; Ziliukas P; Silva AJ
    Biomed Res Int; 2013; 2013():140487. PubMed ID: 23691493
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational fluid dynamics analysis of cyclist aerodynamics: performance of different turbulence-modelling and boundary-layer modelling approaches.
    Defraeye T; Blocken B; Koninckx E; Hespel P; Carmeliet J
    J Biomech; 2010 Aug; 43(12):2281-7. PubMed ID: 20488446
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrodynamic Characteristics of Different Undulatory Underwater Swimming Positions Based on Multi-Body Motion Numerical Simulation Method.
    Yang J; Li T; Chen Z; Zuo C; Li X
    Int J Environ Res Public Health; 2021 Nov; 18(22):. PubMed ID: 34832017
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aerodynamic study of time-trial helmets in cycling racing using CFD analysis.
    Beaumont F; Taiar R; Polidori G; Trenchard H; Grappe F
    J Biomech; 2018 Jan; 67():1-8. PubMed ID: 29150346
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Effect of Depth on Drag During the Streamlined Glide: A Three-Dimensional CFD Analysis.
    Novais ML; Silva AJ; Mantha VR; Ramos RJ; Rouboa AI; Vilas-Boas JP; Luís SR; Marinho DA
    J Hum Kinet; 2012 Jun; 33():55-62. PubMed ID: 23487502
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of passive drag in swimming by numerical simulation and analytical procedure.
    Barbosa TM; Ramos R; Silva AJ; Marinho DA
    J Sports Sci; 2018 Mar; 36(5):492-498. PubMed ID: 28453398
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numerical and experimental flow analysis of the Wang-Zwische double-lumen cannula.
    De Bartolo C; Nigro A; Fragomeni G; Colacino FM; Wang D; Jones CC; Zwischenberger J
    ASAIO J; 2011; 57(4):318-27. PubMed ID: 21654494
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.