BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 21500766)

  • 1. Anisotropy of demineralized bone matrix under compressive load.
    Trębacz H; Zdunek A
    Acta Bioeng Biomech; 2011; 13(1):71-6. PubMed ID: 21500766
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of nonenzymatic glycation on mechanical properties of demineralized bone matrix under compression.
    Trebacz H; Zdunek A; Dys W; Gieroba T; Wlizlo E
    J Appl Biomater Biomech; 2011; 9(2):144-9. PubMed ID: 22065392
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of glucose on fatigue-induced changes in the microstructure and mechanical properties of demineralized bovine cortical bone.
    Trębacz H; Zdunek A; Wlizło-Dyś E; Cybulska J; Pieczywek P
    J Appl Biomater Funct Mater; 2015 Oct; 13(3):e220-7. PubMed ID: 26391867
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of composition and anisotropic elastic properties of secondary osteon lamellae.
    Hofmann T; Heyroth F; Meinhard H; Fränzel W; Raum K
    J Biomech; 2006; 39(12):2282-94. PubMed ID: 16144702
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of fatigue on microstructure and mechanical properties of bone organic matrix under compression.
    Trębacz H; Zdunek A; Cybulska J; Pieczywek P
    Australas Phys Eng Sci Med; 2013 Mar; 36(1):43-54. PubMed ID: 23393006
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of cortical bone elasticity and strength: mechanical testing and ultrasound provide complementary data.
    Grimal Q; Haupert S; Mitton D; Vastel L; Laugier P
    Med Eng Phys; 2009 Nov; 31(9):1140-7. PubMed ID: 19683957
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anisotropy in the compressive mechanical properties of bovine cortical bone and the mineral and protein constituents.
    Novitskaya E; Chen PY; Lee S; Castro-Ceseña A; Hirata G; Lubarda VA; McKittrick J
    Acta Biomater; 2011 Aug; 7(8):3170-7. PubMed ID: 21571104
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Initial anisotropy in demineralized bovine cortical bone in compressive cyclic loading-unloading.
    Novitskaya E; Lee S; Lubarda VA; McKittrick J
    Mater Sci Eng C Mater Biol Appl; 2013 Mar; 33(2):817-23. PubMed ID: 25427492
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mineral anisotropy in mineralized tissues is similar among species and mineral growth occurs independently of collagen orientation in rats: results from acoustic velocity measurements.
    Takano Y; Turner CH; Burr DB
    J Bone Miner Res; 1996 Sep; 11(9):1292-301. PubMed ID: 8864904
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How is the indentation modulus of bone tissue related to its macroscopic elastic response? A validation study.
    Hengsberger S; Enstroem J; Peyrin F; Zysset P
    J Biomech; 2003 Oct; 36(10):1503-9. PubMed ID: 14499299
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Compressive mechanical properties of demineralized and deproteinized cancellous bone.
    Chen PY; McKittrick J
    J Mech Behav Biomed Mater; 2011 Oct; 4(7):961-73. PubMed ID: 21783106
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contribution of collagen and mineral to the elastic anisotropy of bone.
    Hasegawa K; Turner CH; Burr DB
    Calcif Tissue Int; 1994 Nov; 55(5):381-6. PubMed ID: 7866920
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dissociation of mineral and collagen orientations may differentially adapt compact bone for regional loading environments: results from acoustic velocity measurements in deer calcanei.
    Skedros JG; Sorenson SM; Takano Y; Turner CH
    Bone; 2006 Jul; 39(1):143-51. PubMed ID: 16459155
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparative study of young and mature bovine cortical bone.
    Manilay Z; Novitskaya E; Sadovnikov E; McKittrick J
    Acta Biomater; 2013 Feb; 9(2):5280-8. PubMed ID: 22939926
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anisotropic mechanical properties of ovine femoral periosteum and the effects of cryopreservation.
    McBride SH; Evans SF; Knothe Tate ML
    J Biomech; 2011 Jul; 44(10):1954-9. PubMed ID: 21632057
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Elastic anisotropy of bone and dentitional tissues.
    Katz JL; Kinney JH; Spencer P; Wang Y; Fricke B; Walker MP; Friis EA
    J Mater Sci Mater Med; 2005 Sep; 16(9):803-6. PubMed ID: 16167108
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Elastic moduli, yield stress, and ultimate stress of cancellous bone in the canine proximal femur.
    Vahey JW; Lewis JL; Vanderby R
    J Biomech; 1987; 20(1):29-33. PubMed ID: 3558426
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anisotropy of bovine cortical bone tissue damage properties.
    Szabó ME; Thurner PJ
    J Biomech; 2013 Jan; 46(1):2-6. PubMed ID: 23063771
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolution of load transfer between hydroxyapatite and collagen during creep deformation of bone.
    Deymier-Black AC; Yuan F; Singhal A; Almer JD; Brinson LC; Dunand DC
    Acta Biomater; 2012 Jan; 8(1):253-61. PubMed ID: 21878399
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Compressive mechanical properties of bovine cortical bone under varied loading rates.
    Yu B; Zhao GF; Lim JI; Lee YK
    Proc Inst Mech Eng H; 2011 Oct; 225(10):941-7. PubMed ID: 22204116
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.