These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 21500771)

  • 1. Cell wall reactivity of acidophilic and alkaliphilic bacteria determined by potentiometric titrations and Cd adsorption experiments.
    Kenney JP; Fein JB
    Environ Sci Technol; 2011 May; 45(10):4446-52. PubMed ID: 21500771
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of extracellular polymeric substances (EPS) on Cd adsorption by bacteria.
    Wei X; Fang L; Cai P; Huang Q; Chen H; Liang W; Rong X
    Environ Pollut; 2011 May; 159(5):1369-74. PubMed ID: 21300422
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface complexation modeling of proton and Cd adsorption onto an algal cell wall.
    Kaulbach ES; Szymanowski JE; Fein JB
    Environ Sci Technol; 2005 Jun; 39(11):4060-5. PubMed ID: 15984783
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isolation and quantification of cadmium removal mechanisms in batch reactors inoculated by sulphate reducing bacteria: biosorption versus bioprecipitation.
    Pagnanelli F; Cruz Viggi C; Toro L
    Bioresour Technol; 2010 May; 101(9):2981-7. PubMed ID: 20053554
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism of cadmium binding on the cell wall of an acidophilic bacterium.
    Chakravarty R; Banerjee PC
    Bioresour Technol; 2012 Mar; 108():176-83. PubMed ID: 22261660
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of the cell surface and cell wall chemistry of drinking water bacteria by combining XPS, FTIR spectroscopy, modeling, and potentiometric titrations.
    Ojeda JJ; Romero-Gonzalez ME; Bachmann RT; Edyvean RG; Banwart SA
    Langmuir; 2008 Apr; 24(8):4032-40. PubMed ID: 18302422
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metal binding to ligands: cadmium complexes with glutathione revisited.
    Leverrier P; Montigny C; Garrigos M; Champeil P
    Anal Biochem; 2007 Dec; 371(2):215-28. PubMed ID: 17761134
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cd and proton adsorption onto bacterial consortia grown from industrial wastes and contaminated geologic settings.
    Borrok DM; Fein JB; Kulpa CF
    Environ Sci Technol; 2004 Nov; 38(21):5656-64. PubMed ID: 15575285
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Defining the surface adsorption and internalization of copper and cadmium in a soil bacterium, Pseudomonas putida.
    Pabst MW; Miller CD; Dimkpa CO; Anderson AJ; McLean JE
    Chemosphere; 2010 Nov; 81(7):904-10. PubMed ID: 20797767
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sorption of uranium (VI) on homoionic sodium smectite experimental study and surface complexation modeling.
    Korichi S; Bensmaili A
    J Hazard Mater; 2009 Sep; 169(1-3):780-93. PubMed ID: 19428178
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Attachment of L-glutamate to rutile (alpha-TiO(2)): a potentiometric, adsorption, and surface complexation study.
    Jonsson CM; Jonsson CL; Sverjensky DA; Cleaves HJ; Hazen RM
    Langmuir; 2009 Oct; 25(20):12127-35. PubMed ID: 19821622
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Competitive adsorption of copper(II), cadmium(II), lead(II) and zinc(II) onto basic oxygen furnace slag.
    Xue Y; Hou H; Zhu S
    J Hazard Mater; 2009 Feb; 162(1):391-401. PubMed ID: 18579295
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adsorption of copper on Pseudomonas aureofaciens: protective role of surface exopolysaccharides.
    González AG; Shirokova LS; Pokrovsky OS; Emnova EE; Martínez RE; Santana-Casiano JM; González-Dávila M; Pokrovski GS
    J Colloid Interface Sci; 2010 Oct; 350(1):305-14. PubMed ID: 20598702
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Discrete site surface complexation constants for lanthanide adsorption to bacteria as determined by experiments and linear free energy relationships.
    Ngwenya BT; Magennis M; Olive V; Mosselmans JF; Ellam RM
    Environ Sci Technol; 2010 Jan; 44(2):650-6. PubMed ID: 20000843
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of H+ and Cd2+ binding properties of the bacterial exopolysaccharides.
    Lamelas C; Benedetti M; Wilkinson KJ; Slaveykova VI
    Chemosphere; 2006 Nov; 65(8):1362-70. PubMed ID: 16753198
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biosorption of cadmium by the protonated macroalga Sargassum muticum: binding analysis with a nonideal, competitive, and thermodynamically consistent adsorption (NICCA) model.
    Lodeiro P; Rey-Castro C; Barriada JL; Sastre de Vicente ME; Herrero R
    J Colloid Interface Sci; 2005 Sep; 289(2):352-8. PubMed ID: 15922351
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of pH on cadmium and lead binding by extracellular polymeric substances (EPS) extracted from environmental bacterial strains.
    Guibaud G; Bordas F; Saaid A; D'abzac P; Van Hullebusch E
    Colloids Surf B Biointerfaces; 2008 May; 63(1):48-54. PubMed ID: 18160270
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetics of bacterial potentiometric titrations: the effect of equilibration time on buffering capacity of Pantoea agglomerans suspensions.
    Kapetas L; Ngwenya BT; Macdonald AM; Elphick SC
    J Colloid Interface Sci; 2011 Jul; 359(2):481-6. PubMed ID: 21543082
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sorption of cadmium by filamentous soil fungi.
    Płaza G; Lukasik W; Ulfig K
    Acta Microbiol Pol; 1996; 45(2):193-201. PubMed ID: 8997697
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The influence of pH on the growth rate and viability of neutrophilic and acidophilic streptomycetes.
    Flowers TH; Williams ST
    Microbios; 1978; 18(73-74):223-8. PubMed ID: 27702
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.