These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

418 related articles for article (PubMed ID: 21500841)

  • 1. Experimental system for one-dimensional rotational brownian motion.
    McNaughton BH; Kinnunen P; Shlomi M; Cionca C; Pei SN; Clarke R; Argyrakis P; Kopelman R
    J Phys Chem B; 2011 May; 115(18):5212-8. PubMed ID: 21500841
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Brownian motion of a self-propelled particle.
    ten Hagen B; van Teeffelen S; Löwen H
    J Phys Condens Matter; 2011 May; 23(19):194119. PubMed ID: 21525563
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transport coefficients and orientational distributions of rodlike particles with magnetic moment normal to the particle axis under circumstances of a simple shear flow.
    Satoh A; Ozaki M; Ishikawa T; Majima T
    J Colloid Interface Sci; 2005 Dec; 292(2):581-90. PubMed ID: 16081082
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transport coefficients and orientational distributions of spheroidal particles with magnetic moment normal to the particle axis (Analysis for an applied magnetic field normal to the shear plane).
    Satoh A; Ozaki M
    J Colloid Interface Sci; 2006 Jun; 298(2):957-66. PubMed ID: 16430913
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental measurements and Monte Carlo simulations for dosimetric evaluations of intrafraction motion for gated and ungated intensity modulated arc therapy deliveries.
    Oliver M; Gladwish A; Staruch R; Craig J; Gaede S; Chen J; Wong E
    Phys Med Biol; 2008 Nov; 53(22):6419-36. PubMed ID: 18941277
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rotational Analysis of Spherical, Optically Anisotropic Janus Particles by Dynamic Microscopy.
    Wittmeier A; Holterhoff AL; Johnson J; Gibbs JG
    Langmuir; 2015 Sep; 31(38):10402-10. PubMed ID: 26352095
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-dimensional Monte Carlo simulations of internal aggregate structures in a colloidal dispersion composed of rod-like particles with magnetic moment normal to the particle axis.
    Satoh A
    J Colloid Interface Sci; 2008 Feb; 318(1):68-81. PubMed ID: 17988678
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic Monte Carlo versus Brownian dynamics: A comparison for self-diffusion and crystallization in colloidal fluids.
    Sanz E; Marenduzzo D
    J Chem Phys; 2010 May; 132(19):194102. PubMed ID: 20499946
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solution structure, rotational diffusion anisotropy and local backbone dynamics of Rhodobacter capsulatus cytochrome c2.
    Cordier F; Caffrey M; Brutscher B; Cusanovich MA; Marion D; Blackledge M
    J Mol Biol; 1998 Aug; 281(2):341-61. PubMed ID: 9698552
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Brownian motion of an asymmetrical particle in a potential field.
    Grima R; Yaliraki SN
    J Chem Phys; 2007 Aug; 127(8):084511. PubMed ID: 17764273
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two-dimensional Monte Carlo simulations of a colloidal dispersion composed of polydisperse ferromagnetic particles in an applied magnetic field.
    Aoshima M; Satoh A
    J Colloid Interface Sci; 2005 Aug; 288(2):475-88. PubMed ID: 15927615
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rotational diffusion of colloidal particles near confining walls.
    Jones RB
    J Chem Phys; 2005 Oct; 123(16):164705. PubMed ID: 16268720
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Brownian motion of arbitrarily shaped particles in two dimensions.
    Chakrabarty A; Konya A; Wang F; Selinger JV; Sun K; Wei QH
    Langmuir; 2014 Nov; 30(46):13844-53. PubMed ID: 25357180
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-diffusion in two-dimensional hard ellipsoid suspensions.
    Zheng Z; Han Y
    J Chem Phys; 2010 Sep; 133(12):124509. PubMed ID: 20886952
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular dynamics study of translational and rotational diffusion in liquid ortho-terphenyl.
    Berry RJ; Rigby D; Duan D; Schwartz M
    J Phys Chem A; 2006 Jan; 110(1):13-9. PubMed ID: 16392834
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Avoiding unphysical kinetic traps in Monte Carlo simulations of strongly attractive particles.
    Whitelam S; Geissler PL
    J Chem Phys; 2007 Oct; 127(15):154101. PubMed ID: 17949126
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A method to track rotational motion for use in single-molecule biophysics.
    Lipfert J; Kerssemakers JJ; Rojer M; Dekker NH
    Rev Sci Instrum; 2011 Oct; 82(10):103707. PubMed ID: 22047303
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of Proteins' Rotational Diffusion Coefficients from Simulations of Their Free Brownian Motion in Volume-Occupied Environments.
    Długosz M; Antosiewicz JM
    J Chem Theory Comput; 2014 Jan; 10(1):481-91. PubMed ID: 26579925
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamics of rotating paramagnetic particles simulated by lattice Boltzmann and particle dynamics methods.
    Yadav A; Calhoun R; Phelan PE; Vuppu AK; Garcia AA; Hayes M
    IEE Proc Nanobiotechnol; 2006 Dec; 153(6):145-50. PubMed ID: 17187446
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.