These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 21500964)

  • 1. Corneal cell culture models: a tool to study corneal drug absorption.
    Dey S
    Expert Opin Drug Metab Toxicol; 2011 May; 7(5):529-32. PubMed ID: 21500964
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro cell culture models to study the corneal drug absorption.
    Reichl S; Kölln C; Hahne M; Verstraelen J
    Expert Opin Drug Metab Toxicol; 2011 May; 7(5):559-78. PubMed ID: 21381983
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cell culture models of the human cornea - a comparative evaluation of their usefulness to determine ocular drug absorption in-vitro.
    Reichl S
    J Pharm Pharmacol; 2008 Mar; 60(3):299-307. PubMed ID: 18284809
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Culture model of human corneal epithelium for prediction of ocular drug absorption.
    Toropainen E; Ranta VP; Talvitie A; Suhonen P; Urtti A
    Invest Ophthalmol Vis Sci; 2001 Nov; 42(12):2942-8. PubMed ID: 11687540
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Model of transient drug diffusion across cornea.
    Zhang W; Prausnitz MR; Edwards A
    J Control Release; 2004 Sep; 99(2):241-58. PubMed ID: 15380634
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human cornea construct HCC-an alternative for in vitro permeation studies? A comparison with human donor corneas.
    Reichl S; Döhring S; Bednarz J; Müller-Goymann CC
    Eur J Pharm Biopharm; 2005 Jul; 60(2):305-8. PubMed ID: 15939241
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solid lipid nanoparticles for ocular drug delivery.
    Seyfoddin A; Shaw J; Al-Kassas R
    Drug Deliv; 2010; 17(7):467-89. PubMed ID: 20491540
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Validation of cell culture models for the intestine and the blood-brain barrier and comparison of drug permeation.
    Bock U; Flötotto T; Haltner E
    ALTEX; 2004; 21 Suppl 3():57-64. PubMed ID: 15057409
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a serum-free human cornea construct for in vitro drug absorption studies: the influence of varying cultivation parameters on barrier characteristics.
    Hahne M; Reichl S
    Int J Pharm; 2011 Sep; 416(1):268-79. PubMed ID: 21771646
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Drug delivery to the posterior segment of the eye.
    Thrimawithana TR; Young S; Bunt CR; Green C; Alany RG
    Drug Discov Today; 2011 Mar; 16(5-6):270-7. PubMed ID: 21167306
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of human corneal epithelial cell model as a surrogate for corneal permeability assessment: metabolism and transport.
    Xiang CD; Batugo M; Gale DC; Zhang T; Ye J; Li C; Zhou S; Wu EY; Zhang EY
    Drug Metab Dispos; 2009 May; 37(5):992-8. PubMed ID: 19220984
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro models to evaluate the permeability of poorly soluble drug entities: challenges and perspectives.
    Buckley ST; Fischer SM; Fricker G; Brandl M
    Eur J Pharm Sci; 2012 Feb; 45(3):235-50. PubMed ID: 22178532
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioavailability and anticataract effects of a topical ocular drug delivery system containing disulfiram and hydroxypropyl-beta-cyclodextrin on selenite-treated rats.
    Wang S; Li D; Ito Y; Nabekura T; Wang S; Zhang J; Wu C
    Curr Eye Res; 2004 Jul; 29(1):51-8. PubMed ID: 15370367
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Corneal and conjunctival drug permeability: Systematic comparison and pharmacokinetic impact in the eye.
    Ramsay E; Del Amo EM; Toropainen E; Tengvall-Unadike U; Ranta VP; Urtti A; Ruponen M
    Eur J Pharm Sci; 2018 Jul; 119():83-89. PubMed ID: 29625211
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Corneal pharmacokinetics of topically applied azithromycin and clarithromycin.
    Kuehne JJ; Yu AL; Holland GN; Ramaswamy A; Taban R; Mondino BJ; Yu F; Rayner SA; Giese MJ
    Am J Ophthalmol; 2004 Oct; 138(4):547-53. PubMed ID: 15488779
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cell culture-based models for intestinal permeability: a critique.
    Balimane PV; Chong S
    Drug Discov Today; 2005 Mar; 10(5):335-43. PubMed ID: 15749282
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pharmacokinetics of erythromycin in rabbit corneas after single-dose infusion: role of P-glycoprotein as a barrier to in vivo ocular drug absorption.
    Dey S; Gunda S; Mitra AK
    J Pharmacol Exp Ther; 2004 Oct; 311(1):246-55. PubMed ID: 15175422
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of a human corneal epithelial cell line as an in vitro model for assessing ocular irritation.
    Kruszewski FH; Walker TL; DiPasquale LC
    Fundam Appl Toxicol; 1997 Apr; 36(2):130-40. PubMed ID: 9143482
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polyoxyethylated nonionic surfactants and their applications in topical ocular drug delivery.
    Jiao J
    Adv Drug Deliv Rev; 2008 Dec; 60(15):1663-73. PubMed ID: 18845195
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rationalizing the selection of oral lipid based drug delivery systems by an in vitro dynamic lipolysis model for improved oral bioavailability of poorly water soluble drugs.
    Dahan A; Hoffman A
    J Control Release; 2008 Jul; 129(1):1-10. PubMed ID: 18499294
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.