BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 21501142)

  • 1. NADPH oxidase (NOX) isoforms are inhibited by celastrol with a dual mode of action.
    Jaquet V; Marcoux J; Forest E; Leidal KG; McCormick S; Westermaier Y; Perozzo R; Plastre O; Fioraso-Cartier L; Diebold B; Scapozza L; Nauseef WM; Fieschi F; Krause KH; Bedard K
    Br J Pharmacol; 2011 Sep; 164(2b):507-20. PubMed ID: 21501142
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Point mutations in the proline-rich region of p22phox are dominant inhibitors of Nox1- and Nox2-dependent reactive oxygen generation.
    Kawahara T; Ritsick D; Cheng G; Lambeth JD
    J Biol Chem; 2005 Sep; 280(36):31859-69. PubMed ID: 15994299
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Constitutive NADPH-dependent electron transferase activity of the Nox4 dehydrogenase domain.
    Nisimoto Y; Jackson HM; Ogawa H; Kawahara T; Lambeth JD
    Biochemistry; 2010 Mar; 49(11):2433-42. PubMed ID: 20163138
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Resveratrol, piperine and apigenin differ in their NADPH-oxidase inhibitory and reactive oxygen species-scavenging properties.
    Whitehouse S; Chen PL; Greenshields AL; Nightingale M; Hoskin DW; Bedard K
    Phytomedicine; 2016 Nov; 23(12):1494-1503. PubMed ID: 27765370
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Celastrol ameliorates Cd-induced neuronal apoptosis by targeting NOX2-derived ROS-dependent PP5-JNK signaling pathway.
    Xu C; Wang X; Gu C; Zhang H; Zhang R; Dong X; Liu C; Hu X; Ji X; Huang S; Chen L
    J Neurochem; 2017 Apr; 141(1):48-62. PubMed ID: 28129433
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nox4: a hydrogen peroxide-generating oxygen sensor.
    Nisimoto Y; Diebold BA; Cosentino-Gomes D; Lambeth JD
    Biochemistry; 2014 Aug; 53(31):5111-20. PubMed ID: 25062272
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The NADPH oxidase Nox3 constitutively produces superoxide in a p22phox-dependent manner: its regulation by oxidase organizers and activators.
    Ueno N; Takeya R; Miyano K; Kikuchi H; Sumimoto H
    J Biol Chem; 2005 Jun; 280(24):23328-39. PubMed ID: 15824103
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nox4 B-loop creates an interface between the transmembrane and dehydrogenase domains.
    Jackson HM; Kawahara T; Nisimoto Y; Smith SM; Lambeth JD
    J Biol Chem; 2010 Apr; 285(14):10281-90. PubMed ID: 20139414
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of NOXO1 activity through reversible interactions with p22 and NOXA1.
    Dutta S; Rittinger K
    PLoS One; 2010 May; 5(5):e10478. PubMed ID: 20454568
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arachidonic acid induces direct interaction of the p67(phox)-Rac complex with the phagocyte oxidase Nox2, leading to superoxide production.
    Matono R; Miyano K; Kiyohara T; Sumimoto H
    J Biol Chem; 2014 Sep; 289(36):24874-84. PubMed ID: 25056956
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crucial role of two potential cytosolic regions of Nox2, 191TSSTKTIRRS200 and 484DESQANHFAVHHDEEKD500, on NADPH oxidase activation.
    Li XJ; Grunwald D; Mathieu J; Morel F; Stasia MJ
    J Biol Chem; 2005 Apr; 280(15):14962-73. PubMed ID: 15684431
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mapping of functional domains in the p22(phox) subunit of flavocytochrome b(559) participating in the assembly of the NADPH oxidase complex by "peptide walking".
    Dahan I; Issaeva I; Gorzalczany Y; Sigal N; Hirshberg M; Pick E
    J Biol Chem; 2002 Mar; 277(10):8421-32. PubMed ID: 11733522
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of NADPH oxidase 1 activity and blocking the binding of cytosolic and membrane-bound proteins by honokiol inhibit migratory potential of melanoma cells.
    Prasad R; Kappes JC; Katiyar SK
    Oncotarget; 2016 Feb; 7(7):7899-912. PubMed ID: 26760964
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New insights in the molecular regulation of the NADPH oxidase 2 activity: Negative modulation by Poldip2.
    Bouraoui A; Louzada RA; Aimeur S; Waeytens J; Wien F; My-Chan Dang P; Bizouarn T; Dupuy C; Baciou L
    Free Radic Biol Med; 2023 Apr; 199():113-125. PubMed ID: 36828293
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular evolution of Phox-related regulatory subunits for NADPH oxidase enzymes.
    Kawahara T; Lambeth JD
    BMC Evol Biol; 2007 Sep; 7():178. PubMed ID: 17900370
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Soluble Regulatory Proteins for Activation of NOX Family NADPH Oxidases.
    Sumimoto H; Minakami R; Miyano K
    Methods Mol Biol; 2019; 1982():121-137. PubMed ID: 31172470
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hsp90 regulates NADPH oxidase activity and is necessary for superoxide but not hydrogen peroxide production.
    Chen F; Pandey D; Chadli A; Catravas JD; Chen T; Fulton DJ
    Antioxid Redox Signal; 2011 Jun; 14(11):2107-19. PubMed ID: 21194376
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strategies for identifying synthetic peptides to act as inhibitors of NADPH oxidases, or "all that you did and did not want to know about Nox inhibitory peptides".
    Dahan I; Pick E
    Cell Mol Life Sci; 2012 Jul; 69(14):2283-305. PubMed ID: 22562603
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NADPH oxidases as potential pharmacological targets against increased seizure susceptibility after systemic inflammation.
    Huang WY; Lin S; Chen HY; Chen YP; Chen TY; Hsu KS; Wu HM
    J Neuroinflammation; 2018 May; 15(1):140. PubMed ID: 29753328
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of the small GTPase Rac in p22phox-dependent NADPH oxidases.
    Miyano K; Sumimoto H
    Biochimie; 2007 Sep; 89(9):1133-44. PubMed ID: 17583407
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.