These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 2150152)

  • 1. The role of the NMDA receptor in the development of the frog visual system.
    Cline HT; Debski EA; Constantine-Paton M
    Adv Exp Med Biol; 1990; 268():197-203. PubMed ID: 2150152
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NMDA receptor currents suppress synapse formation on sprouting axons in vivo.
    Colonnese MT; Zhao JP; Constantine-Paton M
    J Neurosci; 2005 Feb; 25(5):1291-303. PubMed ID: 15689567
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nicotine exposure refines visual map topography through an NMDA receptor-mediated pathway.
    Yan X; Zhao B; Butt CM; Debski EA
    Eur J Neurosci; 2006 Dec; 24(11):3026-42. PubMed ID: 17156364
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Retina-driven dephosphorylation of the NR2A subunit correlates with faster NMDA receptor kinetics at developing retinocollicular synapses.
    Townsend M; Liu Y; Constantine-Paton M
    J Neurosci; 2004 Dec; 24(49):11098-107. PubMed ID: 15590926
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control of axon branch dynamics by correlated activity in vivo.
    Ruthazer ES; Akerman CJ; Cline HT
    Science; 2003 Jul; 301(5629):66-70. PubMed ID: 12843386
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reversal and stabilization of synaptic modifications in a developing visual system.
    Zhou Q; Tao HW; Poo MM
    Science; 2003 Jun; 300(5627):1953-7. PubMed ID: 12817152
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional synaptic relations during the development of the retino-tectal projection in amphibians.
    Chung SH; Keating MJ; Bliss TV
    Proc R Soc Lond B Biol Sci; 1974 Nov; 187(1089):449-59. PubMed ID: 4155504
    [No Abstract]   [Full Text] [Related]  

  • 8. Developmental period for N-methyl-D-aspartate (NMDA) receptor-dependent synapse elimination correlated with visuotopic map refinement.
    Colonnese MT; Constantine-Paton M
    J Comp Neurol; 2006 Feb; 494(5):738-51. PubMed ID: 16374812
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanisms involved in development of retinotectal connections: roles of Eph receptor tyrosine kinases, NMDA receptors and nitric oxide.
    Ernst AF; Jurney WM; McLoon SC
    Prog Brain Res; 1998; 118():115-31. PubMed ID: 9932438
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activity-dependent tuning and the NMDA receptor.
    Debski EA; Cline HT; Constantine-Paton M
    J Neurobiol; 1990 Jan; 21(1):18-32. PubMed ID: 2156953
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synaptic regulation of L-type Ca(2+) channel activity and long-term depression during refinement of the retinocollicular pathway in developing rodent superior colliculus.
    Lo FS; Mize RR
    J Neurosci; 2000 Feb; 20(3):RC58. PubMed ID: 10648733
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of synaptic distribution within single retinal axonal arbors after chronic NMDA treatment.
    Yen L; Sibley JT; Constantine-Paton M
    J Neurosci; 1995 Jun; 15(6):4712-25. PubMed ID: 7540683
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development and maintenance of connectivity in the visual system of the frog. II. The effects of eye removal.
    Hirsch HV; Jacobson M
    Brain Res; 1973 Jan; 49(1):67-74. PubMed ID: 4540550
    [No Abstract]   [Full Text] [Related]  

  • 14. NMDA antagonists in the superior colliculus prevent developmental plasticity but not visual transmission or map compression.
    Huang L; Pallas SL
    J Neurophysiol; 2001 Sep; 86(3):1179-94. PubMed ID: 11535668
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced visual activity in vivo forms nascent synapses in the developing retinotectal projection.
    Aizenman CD; Cline HT
    J Neurophysiol; 2007 Apr; 97(4):2949-57. PubMed ID: 17267761
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of retinal central projection in Xenopus tadpoles.
    Fujisawa H; Takagi S
    Prog Clin Biol Res; 1986; 217B():109-12. PubMed ID: 3749169
    [No Abstract]   [Full Text] [Related]  

  • 17. Ultrastructural evidence of the formation of synapses by retinal ganglion cell axons in two nonstandard targets.
    Cantore WA; Scalia F
    J Comp Neurol; 1987 Jul; 261(1):137-47. PubMed ID: 3497955
    [TBL] [Abstract][Full Text] [Related]  

  • 18. BDNF stabilizes synapses and maintains the structural complexity of optic axons in vivo.
    Hu B; Nikolakopoulou AM; Cohen-Cory S
    Development; 2005 Oct; 132(19):4285-98. PubMed ID: 16141221
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MK801 increases retinotectal arbor size in developing zebrafish without affecting kinetics of branch elimination and addition.
    Schmidt JT; Buzzard M; Borress R; Dhillon S
    J Neurobiol; 2000 Feb; 42(3):303-14. PubMed ID: 10645970
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Substance P-containing ganglion cells become progressively less detectable during retinotectal development in the frog Rana pipiens.
    Kuljis RO; Karten HJ
    Proc Natl Acad Sci U S A; 1986 Aug; 83(15):5736-40. PubMed ID: 2426705
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.