These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 21501711)

  • 1. In silico classification of human maximum recommended daily dose based on modified random forest and substructure fingerprint.
    Cao DS; Hu QN; Xu QS; Yang YN; Zhao JC; Lu HM; Zhang LX; Liang YZ
    Anal Chim Acta; 2011 Apr; 692(1-2):50-6. PubMed ID: 21501711
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimating the safe starting dose in phase I clinical trials and no observed effect level based on QSAR modeling of the human maximum recommended daily dose.
    Contrera JF; Matthews EJ; Kruhlak NL; Benz RD
    Regul Toxicol Pharmacol; 2004 Dec; 40(3):185-206. PubMed ID: 15546675
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimation of ADME properties with substructure pattern recognition.
    Shen J; Cheng F; Xu Y; Li W; Tang Y
    J Chem Inf Model; 2010 Jun; 50(6):1034-41. PubMed ID: 20578727
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of chemical carcinogenicity by machine learning approaches.
    Tan NX; Rao HB; Li ZR; Li XY
    SAR QSAR Environ Res; 2009; 20(1-2):27-75. PubMed ID: 19343583
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Statistical geometry based prediction of nonsynonymous SNP functional effects using random forest and neuro-fuzzy classifiers.
    Barenboim M; Masso M; Vaisman II; Jamison DC
    Proteins; 2008 Jun; 71(4):1930-9. PubMed ID: 18186470
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In silico prediction of Tetrahymena pyriformis toxicity for diverse industrial chemicals with substructure pattern recognition and machine learning methods.
    Cheng F; Shen J; Yu Y; Li W; Liu G; Lee PW; Tang Y
    Chemosphere; 2011 Mar; 82(11):1636-43. PubMed ID: 21145574
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Large-scale learning of structure-activity relationships using a linear support vector machine and problem-specific metrics.
    Hinselmann G; Rosenbaum L; Jahn A; Fechner N; Ostermann C; Zell A
    J Chem Inf Model; 2011 Feb; 51(2):203-13. PubMed ID: 21207929
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combining machine learning and pharmacophore-based interaction fingerprint for in silico screening.
    Sato T; Honma T; Yokoyama S
    J Chem Inf Model; 2010 Jan; 50(1):170-85. PubMed ID: 20038188
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of P-glycoprotein substrates by a support vector machine approach.
    Xue Y; Yap CW; Sun LZ; Cao ZW; Wang JF; Chen YZ
    J Chem Inf Comput Sci; 2004; 44(4):1497-505. PubMed ID: 15272858
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three new consensus QSAR models for the prediction of Ames genotoxicity.
    Votano JR; Parham M; Hall LH; Kier LB; Oloff S; Tropsha A; Xie Q; Tong W
    Mutagenesis; 2004 Sep; 19(5):365-77. PubMed ID: 15388809
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A binary ant colony optimization classifier for molecular activities.
    Hammann F; Suenderhauf C; Huwyler J
    J Chem Inf Model; 2011 Oct; 51(10):2690-6. PubMed ID: 21854036
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Drug discovery using support vector machines. The case studies of drug-likeness, agrochemical-likeness, and enzyme inhibition predictions.
    Zernov VV; Balakin KV; Ivaschenko AA; Savchuk NP; Pletnev IV
    J Chem Inf Comput Sci; 2003; 43(6):2048-56. PubMed ID: 14632457
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting human liver microsomal stability with machine learning techniques.
    Sakiyama Y; Yuki H; Moriya T; Hattori K; Suzuki M; Shimada K; Honma T
    J Mol Graph Model; 2008 Feb; 26(6):907-15. PubMed ID: 17683964
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A machine learning based method for the prediction of secretory proteins using amino acid composition, their order and similarity-search.
    Garg A; Raghava GP
    In Silico Biol; 2008; 8(2):129-40. PubMed ID: 18928201
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Data mining and machine learning techniques for the identification of mutagenicity inducing substructures and structure activity relationships of noncongeneric compounds.
    Helma C; Cramer T; Kramer S; De Raedt L
    J Chem Inf Comput Sci; 2004; 44(4):1402-11. PubMed ID: 15272848
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of support vector machine and artificial neural network systems for drug/nondrug classification.
    Byvatov E; Fechner U; Sadowski J; Schneider G
    J Chem Inf Comput Sci; 2003; 43(6):1882-9. PubMed ID: 14632437
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Substructure-based support vector machine classifiers for prediction of adverse effects in diverse classes of drugs.
    Bhavani S; Nagargadde A; Thawani A; Sridhar V; Chandra N
    J Chem Inf Model; 2006; 46(6):2478-86. PubMed ID: 17125188
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Classification of cytochrome P450 1A2 inhibitors and noninhibitors by machine learning techniques.
    Vasanthanathan P; Taboureau O; Oostenbrink C; Vermeulen NP; Olsen L; Jørgensen FS
    Drug Metab Dispos; 2009 Mar; 37(3):658-64. PubMed ID: 19056915
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction models of human plasma protein binding rate and oral bioavailability derived by using GA-CG-SVM method.
    Ma CY; Yang SY; Zhang H; Xiang ML; Huang Q; Wei YQ
    J Pharm Biomed Anal; 2008 Aug; 47(4-5):677-82. PubMed ID: 18455346
    [TBL] [Abstract][Full Text] [Related]  

  • 20. First-principle, structure-based prediction of hepatic metabolic clearance values in human.
    Li H; Sun J; Sui X; Liu J; Yan Z; Liu X; Sun Y; He Z
    Eur J Med Chem; 2009 Apr; 44(4):1600-6. PubMed ID: 18768239
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.