These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
267 related articles for article (PubMed ID: 21502292)
1. Effects of anodal transcranial direct current stimulation over the leg motor area on lumbar spinal network excitability in healthy subjects. Roche N; Lackmy A; Achache V; Bussel B; Katz R J Physiol; 2011 Jun; 589(Pt 11):2813-26. PubMed ID: 21502292 [TBL] [Abstract][Full Text] [Related]
2. Impact of transcranial direct current stimulation on spinal network excitability in humans. Roche N; Lackmy A; Achache V; Bussel B; Katz R J Physiol; 2009 Dec; 587(Pt 23):5653-64. PubMed ID: 19805746 [TBL] [Abstract][Full Text] [Related]
3. Effects of anodal tDCS on lumbar propriospinal system in healthy subjects. Roche N; Lackmy A; Achache V; Bussel B; Katz R Clin Neurophysiol; 2012 May; 123(5):1027-34. PubMed ID: 22014699 [TBL] [Abstract][Full Text] [Related]
4. Task-specific depression of the soleus H-reflex after cocontraction training of antagonistic ankle muscles. Perez MA; Lundbye-Jensen J; Nielsen JB J Neurophysiol; 2007 Dec; 98(6):3677-87. PubMed ID: 17942616 [TBL] [Abstract][Full Text] [Related]
5. Anodal transcranial direct current stimulation of the motor cortex induces opposite modulation of reciprocal inhibition in wrist extensor and flexor. Lackmy-Vallée A; Klomjai W; Bussel B; Katz R; Roche N J Neurophysiol; 2014 Sep; 112(6):1505-15. PubMed ID: 24920031 [TBL] [Abstract][Full Text] [Related]
6. Impact of precision grip tasks on cervical spinal network excitability in humans. Roche N; Bussel B; Maier MA; Katz R; Lindberg P J Physiol; 2011 Jul; 589(Pt 14):3545-58. PubMed ID: 21606115 [TBL] [Abstract][Full Text] [Related]
7. Transcranial direct current stimulation modulates the spinal plasticity induced with patterned electrical stimulation. Fujiwara T; Tsuji T; Honaga K; Hase K; Ushiba J; Liu M Clin Neurophysiol; 2011 Sep; 122(9):1834-7. PubMed ID: 21377414 [TBL] [Abstract][Full Text] [Related]
8. Increasing human leg motor cortex excitability by transcranial high frequency random noise stimulation. Laczó B; Antal A; Rothkegel H; Paulus W Restor Neurol Neurosci; 2014; 32(3):403-10. PubMed ID: 24576783 [TBL] [Abstract][Full Text] [Related]
9. Acute effects of Achilles tendon vibration on soleus and tibialis anterior spinal and cortical excitability. Lapole T; Deroussen F; Pérot C; Petitjean M Appl Physiol Nutr Metab; 2012 Aug; 37(4):657-63. PubMed ID: 22568876 [TBL] [Abstract][Full Text] [Related]
10. Effects of transcranial direct current stimulation on the excitability of the leg motor cortex. Jeffery DT; Norton JA; Roy FD; Gorassini MA Exp Brain Res; 2007 Sep; 182(2):281-7. PubMed ID: 17717651 [TBL] [Abstract][Full Text] [Related]
11. The effects of anodal transcranial direct current stimulation and patterned electrical stimulation on spinal inhibitory interneurons and motor function in patients with spinal cord injury. Yamaguchi T; Fujiwara T; Tsai YA; Tang SC; Kawakami M; Mizuno K; Kodama M; Masakado Y; Liu M Exp Brain Res; 2016 Jun; 234(6):1469-78. PubMed ID: 26790423 [TBL] [Abstract][Full Text] [Related]
12. Effects of cerebellar transcranial direct current stimulation on the excitability of spinal motor neurons and vestibulospinal tract in healthy individuals. Sato Y; Terasawa Y; Okada Y; Hasui N; Mizuta N; Ohnishi S; Fujita D; Morioka S Exp Brain Res; 2024 Oct; 242(10):2381-2390. PubMed ID: 39133291 [TBL] [Abstract][Full Text] [Related]
13. Paired associative transspinal and transcortical stimulation produces plasticity in human cortical and spinal neuronal circuits. Dixon L; Ibrahim MM; Santora D; Knikou M J Neurophysiol; 2016 Aug; 116(2):904-16. PubMed ID: 27281748 [TBL] [Abstract][Full Text] [Related]
14. Corticospinal excitability of tibialis anterior and soleus differs during passive ankle movement. Škarabot J; Ansdell P; Brownstein CG; Hicks KM; Howatson G; Goodall S; Durbaba R Exp Brain Res; 2019 Sep; 237(9):2239-2254. PubMed ID: 31243484 [TBL] [Abstract][Full Text] [Related]
15. Short-term effects of functional electrical stimulation on spinal excitatory and inhibitory reflexes in ankle extensor and flexor muscles. Thompson AK; Doran B; Stein RB Exp Brain Res; 2006 Apr; 170(2):216-26. PubMed ID: 16317575 [TBL] [Abstract][Full Text] [Related]
16. Effects of transcranial direct current stimulation over the human motor cortex on corticospinal and transcallosal excitability. Lang N; Nitsche MA; Paulus W; Rothwell JC; Lemon RN Exp Brain Res; 2004 Jun; 156(4):439-43. PubMed ID: 14745467 [TBL] [Abstract][Full Text] [Related]
17. Adaptive threshold hunting for the effects of transcranial direct current stimulation on primary motor cortex inhibition. Mooney RA; Cirillo J; Byblow WD Exp Brain Res; 2018 Jun; 236(6):1651-1663. PubMed ID: 29610948 [TBL] [Abstract][Full Text] [Related]
18. Acute changes in motor cortical excitability during slow oscillatory and constant anodal transcranial direct current stimulation. Bergmann TO; Groppa S; Seeger M; Mölle M; Marshall L; Siebner HR J Neurophysiol; 2009 Oct; 102(4):2303-11. PubMed ID: 19692511 [TBL] [Abstract][Full Text] [Related]
19. Transcranial direct current stimulation effects on the excitability of corticospinal axons of the human cerebral cortex. Di Lazzaro V; Ranieri F; Profice P; Pilato F; Mazzone P; Capone F; Insola A; Oliviero A Brain Stimul; 2013 Jul; 6(4):641-3. PubMed ID: 23085442 [TBL] [Abstract][Full Text] [Related]
20. Anodal Cerebellar Direct Current Stimulation Reduces Facilitation of Propriospinal Neurons in Healthy Humans. Chothia M; Doeltgen S; Bradnam LV Brain Stimul; 2016; 9(3):364-371. PubMed ID: 26849999 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]