These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 21502467)

  • 21. [Simulation of inferior turbinate reduction using computational fluid dynamics methods].
    Guo YF; Shan YM; Cai HK; Chen XM; Gao XQ
    Lin Chuang Er Bi Yan Hou Tou Jing Wai Ke Za Zhi; 2017 Feb; 31(4):257-261. PubMed ID: 29871238
    [No Abstract]   [Full Text] [Related]  

  • 22. Virtual surgery for patients with nasal obstruction: Use of computational fluid dynamics (MeComLand
    Burgos MA; Sevilla García MA; Sanmiguel Rojas E; Del Pino C; Fernández Velez C; Piqueras F; Esteban Ortega F
    Acta Otorrinolaringol Esp (Engl Ed); 2018; 69(3):125-133. PubMed ID: 28923473
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Aerodynamic impact of total inferior turbinectomy versus inferior turbinoplasty - a computational fluid dynamics study.
    Siu J; Inthavong K; Shang Y; Vahaji S; Douglas RG
    Rhinology; 2020 Aug; 58(4):349-359. PubMed ID: 32285046
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The effect of "Pyriform Turbinoplasty" on nasal airflow using a virtual model.
    Simmen D; Sommer F; Briner HR; Jones N; Kröger R; Hoffmann TK; Lindemann J
    Rhinology; 2015 Sep; 53(3):242-8. PubMed ID: 26363165
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Computational fluid dynamics (CFD), virtual rhinomanometry, and virtual surgery for neonatal congenital nasal pyriform aperture stenosis.
    Moreddu E; Meister L; Médale M; Nicollas R
    Int J Pediatr Otorhinolaryngol; 2024 Jul; 182():112025. PubMed ID: 38950452
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Simulating the nasal cycle with computational fluid dynamics.
    Patel RG; Garcia GJ; Frank-Ito DO; Kimbell JS; Rhee JS
    Otolaryngol Head Neck Surg; 2015 Feb; 152(2):353-60. PubMed ID: 25450411
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Use of computational fluid dynamics nasal airflow measurement to design septoplasty: a pilot study.
    Mahasittiwat V; Hemtiwakorn K; Pintavirooj C
    J Med Assoc Thai; 2013 Jan; 96 Suppl 1():S12-7. PubMed ID: 23724450
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of septal deviation on the airflow characteristics: using computational fluid dynamics models.
    Liu T; Han D; Wang J; Tan J; Zang H; Wang T; Li Y; Cui S
    Acta Otolaryngol; 2012 Mar; 132(3):290-8. PubMed ID: 22201479
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Septal deviation and nasal resistance: an investigation using virtual surgery and computational fluid dynamics.
    Garcia GJ; Rhee JS; Senior BA; Kimbell JS
    Am J Rhinol Allergy; 2010; 24(1):e46-53. PubMed ID: 20109325
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Toward automatic atlas-based surgical planning for septoplasty.
    Vicory J; Garcia GJM; Rhee JS; Enquobahrie A
    Int J Comput Assist Radiol Surg; 2022 Feb; 17(2):403-411. PubMed ID: 34837564
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Computational fluid dynamics assessed changes of nasal airflow after inferior turbinate surgery.
    Ormiskangas J; Valtonen O; Harju T; Rautiainen M; Kivekäs I
    Respir Physiol Neurobiol; 2022 Aug; 302():103917. PubMed ID: 35500884
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Correlation between Subjective Nasal Patency and Intranasal Airflow Distribution.
    Casey KP; Borojeni AA; Koenig LJ; Rhee JS; Garcia GJ
    Otolaryngol Head Neck Surg; 2017 Apr; 156(4):741-750. PubMed ID: 28139171
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Aerodynamic effects of inferior turbinate surgery on nasal airflow--a computational fluid dynamics model.
    Chen XB; Leong SC; Lee HP; Chong VF; Wang DY
    Rhinology; 2010 Dec; 48(4):394-400. PubMed ID: 21442074
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evaluation of the intranasal flow field through computational fluid dynamics.
    Hildebrandt T; Goubergrits L; Heppt WJ; Bessler S; Zachow S
    Facial Plast Surg; 2013 Apr; 29(2):93-8. PubMed ID: 23564240
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Normative ranges of nasal airflow variables in healthy adults.
    Borojeni AAT; Garcia GJM; Moghaddam MG; Frank-Ito DO; Kimbell JS; Laud PW; Koenig LJ; Rhee JS
    Int J Comput Assist Radiol Surg; 2020 Jan; 15(1):87-98. PubMed ID: 31267334
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Creation of an idealized nasopharynx geometry for accurate computational fluid dynamics simulations of nasal airflow in patient-specific models lacking the nasopharynx anatomy.
    A T Borojeni A; Frank-Ito DO; Kimbell JS; Rhee JS; Garcia GJM
    Int J Numer Method Biomed Eng; 2017 May; 33(5):. PubMed ID: 27525807
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Impact of Adhesions on Nasal Airflow: A Quantitative Analysis Using Computational Fluid Dynamics.
    Senanayake P; Warfield-McAlpine P; Salati H; Bradshaw K; Wong E; Inthavong K; Singh N
    Am J Rhinol Allergy; 2023 May; 37(3):273-283. PubMed ID: 36373577
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Side asymmetry in nasal resistance correlate with nasal obstruction severity in patients with septal deformities: Computational fluid dynamics study.
    Janović N; Ćoćić A; Stamenić M; Janović A; Djurić M
    Clin Otolaryngol; 2020 Sep; 45(5):718-724. PubMed ID: 32365272
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sensitivity of nasal airflow variables computed via computational fluid dynamics to the computed tomography segmentation threshold.
    Cherobin GB; Voegels RL; Gebrim EMMS; Garcia GJM
    PLoS One; 2018; 13(11):e0207178. PubMed ID: 30444909
    [TBL] [Abstract][Full Text] [Related]  

  • 40. DigBody
    Burgos MA; Sanmiguel-Rojas E; Singh N; Esteban-Ortega F
    Comput Biol Med; 2018 Jul; 98():118-125. PubMed ID: 29787939
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.