These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

885 related articles for article (PubMed ID: 21502525)

  • 1. Dynamic reconfiguration of human brain networks during learning.
    Bassett DS; Wymbs NF; Porter MA; Mucha PJ; Carlson JM; Grafton ST
    Proc Natl Acad Sci U S A; 2011 May; 108(18):7641-6. PubMed ID: 21502525
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reconfiguration of Brain Network Architectures between Resting-State and Complexity-Dependent Cognitive Reasoning.
    Hearne LJ; Cocchi L; Zalesky A; Mattingley JB
    J Neurosci; 2017 Aug; 37(35):8399-8411. PubMed ID: 28760864
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Age-related changes in modular organization of human brain functional networks.
    Meunier D; Achard S; Morcom A; Bullmore E
    Neuroimage; 2009 Feb; 44(3):715-23. PubMed ID: 19027073
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cohesive network reconfiguration accompanies extended training.
    Telesford QK; Ashourvan A; Wymbs NF; Grafton ST; Vettel JM; Bassett DS
    Hum Brain Mapp; 2017 Sep; 38(9):4744-4759. PubMed ID: 28646563
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Segregation and Integration of Distinct Brain Networks and Their Relationship to Cognition.
    Cohen JR; D'Esposito M
    J Neurosci; 2016 Nov; 36(48):12083-12094. PubMed ID: 27903719
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dissociable changes in functional network topology underlie early category learning and development of automaticity.
    Soto FA; Bassett DS; Ashby FG
    Neuroimage; 2016 Nov; 141():220-241. PubMed ID: 27453156
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimal structure of metaplasticity for adaptive learning.
    Khorsand P; Soltani A
    PLoS Comput Biol; 2017 Jun; 13(6):e1005630. PubMed ID: 28658247
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Striatal-cerebellar networks mediate consolidation in a motor sequence learning task: An fMRI study using dynamic causal modelling.
    Tzvi E; Stoldt A; Witt K; Krämer UM
    Neuroimage; 2015 Nov; 122():52-64. PubMed ID: 26244275
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic reconfiguration of the functional brain network after musical training in young adults.
    Li Q; Wang X; Wang S; Xie Y; Li X; Xie Y; Li S
    Brain Struct Funct; 2019 Jun; 224(5):1781-1795. PubMed ID: 31006071
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Visuomotor coordination and cortical connectivity of modular motor learning.
    Burgos PI; Mariman JJ; Makeig S; Rivera-Lillo G; Maldonado PE
    Hum Brain Mapp; 2018 Oct; 39(10):3836-3853. PubMed ID: 29766612
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Complex modular structure of large-scale brain networks.
    Valencia M; Pastor MA; Fernández-Seara MA; Artieda J; Martinerie J; Chavez M
    Chaos; 2009 Jun; 19(2):023119. PubMed ID: 19566254
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magnetic resonance imaging of mouse brain networks plasticity following motor learning.
    Badea A; Ng KL; Anderson RJ; Zhang J; Miller MI; O'Brien RJ
    PLoS One; 2019; 14(5):e0216596. PubMed ID: 31067263
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Beyond modularity: Fine-scale mechanisms and rules for brain network reconfiguration.
    Khambhati AN; Mattar MG; Wymbs NF; Grafton ST; Bassett DS
    Neuroimage; 2018 Feb; 166():385-399. PubMed ID: 29138087
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Shaping embodied neural networks for adaptive goal-directed behavior.
    Chao ZC; Bakkum DJ; Potter SM
    PLoS Comput Biol; 2008 Mar; 4(3):e1000042. PubMed ID: 18369432
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting errors from reconfiguration patterns in human brain networks.
    Ekman M; Derrfuss J; Tittgemeyer M; Fiebach CJ
    Proc Natl Acad Sci U S A; 2012 Oct; 109(41):16714-9. PubMed ID: 23012417
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pilot fMRI investigation of representational plasticity associated with motor skill learning and its functional consequences.
    Plow EB; Carey JR
    Brain Imaging Behav; 2012 Sep; 6(3):437-53. PubMed ID: 22454141
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reorganization and enhanced functional connectivity of motor areas in repetitive ankle movements after training in locomotor attention.
    Sacco K; Cauda F; D'Agata F; Mate D; Duca S; Geminiani G
    Brain Res; 2009 Nov; 1297():124-34. PubMed ID: 19703428
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes in functional connectivity and GABA levels with long-term motor learning.
    Sampaio-Baptista C; Filippini N; Stagg CJ; Near J; Scholz J; Johansen-Berg H
    Neuroimage; 2015 Feb; 106():15-20. PubMed ID: 25463472
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neurophysiological alterations during strategy-based verbal learning in traumatic brain injury.
    Strangman GE; Goldstein R; O'Neil-Pirozzi TM; Kelkar K; Supelana C; Burke D; Katz DI; Rauch SL; Savage CR; Glenn MB
    Neurorehabil Neural Repair; 2009; 23(3):226-36. PubMed ID: 19047359
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tracking Plasticity: Effects of Long-Term Rehearsal in Expert Dancers Encoding Music to Movement.
    Bar RJ; DeSouza JF
    PLoS One; 2016; 11(1):e0147731. PubMed ID: 26824475
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 45.