These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 21502862)

  • 1. A model-free adaptive control to a blood pump based on heart rate.
    Chang Y; Gao B; Gu K
    ASAIO J; 2011; 57(4):262-7. PubMed ID: 21502862
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A pulsatile control algorithm of continuous-flow pump for heart recovery.
    Gao B; Chang Y; Gu K; Zeng Y; Liu Y
    ASAIO J; 2012; 58(4):343-52. PubMed ID: 22576238
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptive physiological speed/flow control of rotary blood pumps in permanent implantation using intrinsic pump parameters.
    Wu Y
    ASAIO J; 2009; 55(4):335-9. PubMed ID: 19506462
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physiological controller of an intra-aorta pump based on baroreflex sensitivity.
    Gao B; Chang Y; Gu K; Zeng Y; Liu Y
    Artif Organs; 2012 Dec; 36(12):1015-25. PubMed ID: 22963124
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Baroreflex sensitivity controller by intra-aortic pump: a potential benefit for heart recovery.
    Gao B; Chang Y; Gu K; Zeng Y; Liu Y
    ASAIO J; 2012; 58(3):197-203. PubMed ID: 22543754
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physiological control of intraaorta pump based on heart rate.
    Gao B; Nie LY; Chang Y; Zeng Y
    ASAIO J; 2011; 57(3):152-7. PubMed ID: 21307771
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An anti-suction control for an intra-aorta pump using blood assistant index: a numerical simulation.
    Gao B; Gu K; Zeng Y; Chang Y
    Artif Organs; 2012 Mar; 36(3):275-82. PubMed ID: 21951205
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Left ventricle afterload impedance control by an axial flow ventricular assist device: a potential tool for ventricular recovery.
    Moscato F; Arabia M; Colacino FM; Naiyanetr P; Danieli GA; Schima H
    Artif Organs; 2010 Sep; 34(9):736-44. PubMed ID: 20636446
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A blood assist index control by intraaorta pump: a control strategy for ventricular recovery.
    Gao B; Gu K; Zeng Y; Liu Y; Chang Y
    ASAIO J; 2011; 57(5):358-62. PubMed ID: 21734559
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a reliable automatic speed control system for rotary blood pumps.
    Vollkron M; Schima H; Huber L; Benkowski R; Morello G; Wieselthaler G
    J Heart Lung Transplant; 2005 Nov; 24(11):1878-85. PubMed ID: 16297795
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fully autonomous preload-sensitive control of implantable rotary blood pumps.
    Arndt A; NĂ¼sser P; Lampe B
    Artif Organs; 2010 Sep; 34(9):726-35. PubMed ID: 20883392
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A control system for rotary blood pumps based on suction detection.
    Ferreira A; Boston JR; Antaki JF
    IEEE Trans Biomed Eng; 2009 Mar; 56(3):656-65. PubMed ID: 19272919
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A method for control of an implantable rotary blood pump for heart failure patients using noninvasive measurements.
    Lim E; Alomari AH; Savkin AV; Dokos S; Fraser JF; Timms DL; Mason DG; Lovell NH
    Artif Organs; 2011 Aug; 35(8):E174-80. PubMed ID: 21843286
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hemodynamic controller for left ventricular assist device based on pulsatility ratio.
    Choi S; Boston JR; Antaki JF
    Artif Organs; 2007 Feb; 31(2):114-25. PubMed ID: 17298400
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A global sliding mode controller design for an intra-aorta pump.
    Chang Y; Gao B
    ASAIO J; 2010; 56(6):510-6. PubMed ID: 21245796
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Performance prediction of a percutaneous ventricular assist system using nonlinear circuit analysis techniques.
    Yu YC; Simaan MA; Mushi SE; Zorn NV
    IEEE Trans Biomed Eng; 2008 Feb; 55(2 Pt 1):419-29. PubMed ID: 18269977
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pulse-pressure-enhancing controller for better physiologic perfusion of rotary blood pumps based on speed modulation.
    Huang F; Ruan X; Fu X
    ASAIO J; 2014; 60(3):269-79. PubMed ID: 24614360
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A mathematical model to evaluate control strategies for mechanical circulatory support.
    Cox LG; Loerakker S; Rutten MC; de Mol BA; van de Vosse FN
    Artif Organs; 2009 Aug; 33(8):593-603. PubMed ID: 19558561
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Baroreflex sensitivity of an arterial wall during rotary blood pump assistance.
    Yambe T; Imachi K; Shiraishi Y; Yamaguchi T; Shibata M; Kameyama T; Yoshizawa M; Sugita N
    Artif Organs; 2009 Sep; 33(9):767-70. PubMed ID: 19775270
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Synthesis and evaluation of the adaptive control system for the ventricular assist device by using the circulatory system simulator].
    Feng JS; Yoshizawa M; Takeda H; Miura M; Yanbe T; Katahira Y; Nitta S
    Iyodenshi To Seitai Kogaku; 1989 Mar; 27(1):8-18. PubMed ID: 2754864
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.