These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 21502885)

  • 41. The energy cost for the step-to-step transition in amputee walking.
    Houdijk H; Pollmann E; Groenewold M; Wiggerts H; Polomski W
    Gait Posture; 2009 Jul; 30(1):35-40. PubMed ID: 19321343
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Predictive validity of three ActiGraph energy expenditure equations for children.
    Trost SG; Way R; Okely AD
    Med Sci Sports Exerc; 2006 Feb; 38(2):380-7. PubMed ID: 16531910
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The use of uniaxial accelerometry for the assessment of physical-activity-related energy expenditure: a validation study against whole-body indirect calorimetry.
    Kumahara H; Schutz Y; Ayabe M; Yoshioka M; Yoshitake Y; Shindo M; Ishii K; Tanaka H
    Br J Nutr; 2004 Feb; 91(2):235-43. PubMed ID: 14756909
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Energy expenditure and physiological responses during walking on a treadmill and moving on the Torqway vehicle.
    Maciejczyk M; Wiecek M; Szymura J; Szygula Z
    Acta Bioeng Biomech; 2016; 18(2):137-43. PubMed ID: 27406000
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Unstable shoes increase energy expenditure of obese patients.
    Maffiuletti NA; Malatesta D; Agosti F; Sartorio A
    Am J Med; 2012 May; 125(5):513-6. PubMed ID: 22482849
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Neural network versus activity-specific prediction equations for energy expenditure estimation in children.
    Ruch N; Joss F; Jimmy G; Melzer K; Hänggi J; Mäder U
    J Appl Physiol (1985); 2013 Nov; 115(9):1229-36. PubMed ID: 23990244
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Youth Energy Expenditure During Common Free-Living Activities and Treadmill Walking.
    Schuna JM; Barreria TV; Hsia DS; Johnson WD; Tudor-Locke C
    J Phys Act Health; 2016 Jun; 13(6 Suppl 1):S29-34. PubMed ID: 27392374
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Energy cost of treadmill walking.
    Bunc V; Dlouhá R
    J Sports Med Phys Fitness; 1997 Jun; 37(2):103-9. PubMed ID: 9239987
    [TBL] [Abstract][Full Text] [Related]  

  • 49. High metabolic cost and low energy expenditure for typical motor activities among individuals in the chronic phase after stroke.
    Kafri M; Myslinski MJ; Gade VK; Deutsch JE
    J Neurol Phys Ther; 2014 Oct; 38(4):226-32. PubMed ID: 25198864
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Energy Expenditure While Using Workstation Alternatives at Self-Selected Intensities.
    Schuna JM; Hsia DS; Tudor-Locke C; Johannsen NM
    J Phys Act Health; 2019 Feb; 16(2):141-148. PubMed ID: 30636499
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Comparison of accelerometers with oxygen consumption in older adults during exercise.
    Fehling PC; Smith DL; Warner SE; Dalsky GP
    Med Sci Sports Exerc; 1999 Jan; 31(1):171-5. PubMed ID: 9927026
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Energy expenditure during level human walking: seeking a simple and accurate predictive solution.
    Ludlow LW; Weyand PG
    J Appl Physiol (1985); 2016 Mar; 120(5):481-94. PubMed ID: 26679617
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Influence of weight classification on walking and jogging energy expenditure prediction in women.
    Heden TD; LeCheminant JD; Smith JD
    Res Q Exerc Sport; 2012 Sep; 83(3):391-9. PubMed ID: 22978188
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Measuring the Energy of Ventilation and Circulation during Human Walking using Induced Hypoxia.
    Horiuchi M; Fukuoka Y; Handa Y; Abe D; Pontzer H
    Sci Rep; 2017 Jul; 7(1):4938. PubMed ID: 28694491
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effect of walking speed on typing performance using an active workstation.
    Funk RE; Taylor ML; Creekmur CC; Ohlinger CM; Cox RH; Berg WP
    Percept Mot Skills; 2012 Aug; 115(1):309-18. PubMed ID: 23033765
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Validation of the Fitbit wireless activity tracker for prediction of energy expenditure.
    Sasaki JE; Hickey A; Mavilia M; Tedesco J; John D; Kozey Keadle S; Freedson PS
    J Phys Act Health; 2015 Feb; 12(2):149-54. PubMed ID: 24770438
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Cardiorespiratory fitness estimation using wearable sensors: Laboratory and free-living analysis of context-specific submaximal heart rates.
    Altini M; Casale P; Penders J; Ten Velde G; Plasqui G; Amft O
    J Appl Physiol (1985); 2016 May; 120(9):1082-96. PubMed ID: 26940653
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Energy Expenditure in Institutionalized Older Adults: Validation of SenseWear Mini.
    Martien S; Seghers J; Boen F; Delecluse C
    Med Sci Sports Exerc; 2015 Jun; 47(6):1265-71. PubMed ID: 25251046
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Validity and reliability of measuring activities, movement intensity and energy expenditure with the DynaPort MoveMonitor.
    de Groot S; Nieuwenhuizen MG
    Med Eng Phys; 2013 Oct; 35(10):1499-505. PubMed ID: 23684579
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [Energy expenditure of adults in the city of Niterói, state of Rio de Janeiro: nutrition, Physical activity and Health Survey--PNAFS].
    Dos Anjos LA; Ferreira BC; de Vasconcellos MT; Wahrlich V
    Cien Saude Colet; 2008; 13(6):1775-84. PubMed ID: 18833354
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.