These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 21502982)

  • 21. Liver as a target for oligonucleotide therapeutics.
    Sehgal A; Vaishnaw A; Fitzgerald K
    J Hepatol; 2013 Dec; 59(6):1354-9. PubMed ID: 23770039
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Applications of RNA interference in mammalian systems.
    Martin SE; Caplen NJ
    Annu Rev Genomics Hum Genet; 2007; 8():81-108. PubMed ID: 17477824
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Noncoding RNA for Cancer Gene Therapy.
    Zhong X; Zhang D; Xiong M; Zhang L
    Recent Results Cancer Res; 2016; 209():51-60. PubMed ID: 28101687
    [TBL] [Abstract][Full Text] [Related]  

  • 24. RNA interference (RNAi)-based therapeutics for treatment of rare neurologic diseases.
    Germain ND; Chung WK; Sarmiere PD
    Mol Aspects Med; 2023 Jun; 91():101148. PubMed ID: 36257857
    [TBL] [Abstract][Full Text] [Related]  

  • 25. RNA interference--a silent but an efficient therapeutic tool.
    Ramachandran PV; Ignacimuthu S
    Appl Biochem Biotechnol; 2013 Mar; 169(6):1774-89. PubMed ID: 23340870
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Advances in RNAi therapeutic delivery to leukocytes using lipid nanoparticles.
    Ramishetti S; Landesman-Milo D; Peer D
    J Drug Target; 2016 Nov; 24(9):780-786. PubMed ID: 27030014
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Lipid Nanoparticle Technology for Clinical Translation of siRNA Therapeutics.
    Kulkarni JA; Witzigmann D; Chen S; Cullis PR; van der Meel R
    Acc Chem Res; 2019 Sep; 52(9):2435-2444. PubMed ID: 31397996
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In vivo application of RNA interference: from functional genomics to therapeutics.
    Lu PY; Xie F; Woodle MC
    Adv Genet; 2005; 54():117-42. PubMed ID: 16096010
    [TBL] [Abstract][Full Text] [Related]  

  • 29. RNA interference strategies as therapy for respiratory viral infections.
    DeVincenzo JP
    Pediatr Infect Dis J; 2008 Oct; 27(10 Suppl):S118-22. PubMed ID: 18820571
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Gene silencing of HIV-1 by RNA interference.
    Takaku H
    Antivir Chem Chemother; 2004 Mar; 15(2):57-65. PubMed ID: 15185724
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nanovehicle-based Small Interfering RNA (siRNA) Delivery for Therapeutic Purposes: A New Molecular Approach in Pharmacogenomics.
    Akhtari J; Tafazoli A; Mehrad-Majd H; Mahrooz A
    Curr Clin Pharmacol; 2018; 13(3):173-182. PubMed ID: 29992895
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Strategies for in vivo delivery of siRNAs: recent progress.
    Higuchi Y; Kawakami S; Hashida M
    BioDrugs; 2010 Jun; 24(3):195-205. PubMed ID: 20462284
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Gene silencing through RNA interference (RNAi) in vivo: strategies based on the direct application of siRNAs.
    Aigner A
    J Biotechnol; 2006 Jun; 124(1):12-25. PubMed ID: 16413079
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A combinatorial approach for achieving CNS-selective RNAi.
    Ferguson CM; Godinho BMDC; Echeverria D; Hassler M; Vangjeli L; Sousa J; McHugh N; Alterman J; Hariharan V; Krishnamurthy PM; Watts J; Rogaev E; Khvorova A
    Nucleic Acids Res; 2024 May; 52(9):5273-5284. PubMed ID: 38348876
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Therapeutic face of RNAi: in vivo challenges.
    Borna H; Imani S; Iman M; Azimzadeh Jamalkandi S
    Expert Opin Biol Ther; 2015 Feb; 15(2):269-85. PubMed ID: 25399911
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Development of RNAi technology for targeted therapy--a track of siRNA based agents to RNAi therapeutics.
    Zhou Y; Zhang C; Liang W
    J Control Release; 2014 Nov; 193():270-81. PubMed ID: 24816071
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cationic liquid crystalline nanoparticles for the delivery of synthetic RNAi-based therapeutics.
    Gentile E; Oba T; Lin J; Shao R; Meng F; Cao X; Lin HY; Mourad M; Pataer A; Baladandayuthapani V; Cai D; Roth JA; Ji L
    Oncotarget; 2017 Jul; 8(29):48222-48239. PubMed ID: 28637023
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Prospects for the potential of RNA interference in the treatment of autoimmune diseases: Small interfering RNAs in the spotlight.
    Gorabi AM; Kiaie N; Aslani S; Jamialahmadi T; Johnston TP; Sahebkar A
    J Autoimmun; 2020 Nov; 114():102529. PubMed ID: 32782117
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Molecular mechanisms of RNA-triggered gene silencing machineries.
    Li Z; Rana TM
    Acc Chem Res; 2012 Jul; 45(7):1122-31. PubMed ID: 22304792
    [TBL] [Abstract][Full Text] [Related]  

  • 40. RNAi-mediated gene silencing in non-human primates.
    Zimmermann TS; Lee AC; Akinc A; Bramlage B; Bumcrot D; Fedoruk MN; Harborth J; Heyes JA; Jeffs LB; John M; Judge AD; Lam K; McClintock K; Nechev LV; Palmer LR; Racie T; Röhl I; Seiffert S; Shanmugam S; Sood V; Soutschek J; Toudjarska I; Wheat AJ; Yaworski E; Zedalis W; Koteliansky V; Manoharan M; Vornlocher HP; MacLachlan I
    Nature; 2006 May; 441(7089):111-4. PubMed ID: 16565705
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.