These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

575 related articles for article (PubMed ID: 21503013)

  • 1. Broadband multi-layer terahertz metamaterials fabrication and characterization on flexible substrates.
    Han NR; Chen ZC; Lim CS; Ng B; Hong MH
    Opt Express; 2011 Apr; 19(8):6990-8. PubMed ID: 21503013
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hybrid metamaterial design and fabrication for terahertz resonance response enhancement.
    Lim CS; Hong MH; Chen ZC; Han NR; Luk'yanchuk B; Chong TC
    Opt Express; 2010 Jun; 18(12):12421-9. PubMed ID: 20588369
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Terahertz response of microfluidic-jetted three-dimensional flexible metamaterials.
    Hor YL; Szabó Z; Lim HC; Federici JF; Li EP
    Appl Opt; 2010 Mar; 49(8):1179-84. PubMed ID: 20220872
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A tunable multi-band metamaterial design using micro-split SRR structures.
    Ekmekci E; Topalli K; Akin T; Turhan-Sayan G
    Opt Express; 2009 Aug; 17(18):16046-58. PubMed ID: 19724605
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [A Double Split Ring Terahertz Filter on Ploymide Substrate].
    He J; Zhang TJ; Xiong W; Zhang B; He T; Shen JL
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Nov; 35(11):3050-3. PubMed ID: 26978906
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polarization insensitive, broadband terahertz metamaterial absorber.
    Grant J; Ma Y; Saha S; Khalid A; Cumming DR
    Opt Lett; 2011 Sep; 36(17):3476-8. PubMed ID: 21886249
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of terahertz metamaterials by laser printing.
    Kim H; Melinger JS; Khachatrian A; Charipar NA; Auyeung RC; Piqué A
    Opt Lett; 2010 Dec; 35(23):4039-41. PubMed ID: 21124605
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High speed terahertz modulation from metamaterials with embedded high electron mobility transistors.
    Shrekenhamer D; Rout S; Strikwerda AC; Bingham C; Averitt RD; Sonkusale S; Padilla WJ
    Opt Express; 2011 May; 19(10):9968-75. PubMed ID: 21643254
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A close-ring pair terahertz metamaterial resonating at normal incidence.
    Gu J; Han J; Lu X; Singh R; Tian Z; Xing Q; Zhang W
    Opt Express; 2009 Oct; 17(22):20307-12. PubMed ID: 19997257
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A broadband planar terahertz metamaterial with nested structure.
    Chowdhury DR; Singh R; Reiten M; Chen HT; Taylor AJ; O'Hara JF; Azad AK
    Opt Express; 2011 Aug; 19(17):15817-23. PubMed ID: 21934944
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stand-up magnetic metamaterials at terahertz frequencies.
    Fan K; Strikwerda AC; Tao H; Zhang X; Averitt RD
    Opt Express; 2011 Jun; 19(13):12619-27. PubMed ID: 21716502
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Resonance enhancement of terahertz metamaterials by liquid crystals/indium tin oxide interfaces.
    Liu Z; Huang CY; Liu H; Zhang X; Lee C
    Opt Express; 2013 Mar; 21(5):6519-25. PubMed ID: 23482222
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Towards loss compensated and lasing terahertz metamaterials based on optically pumped graphene.
    Weis P; Garcia-Pomar JL; Rahm M
    Opt Express; 2014 Apr; 22(7):8473-89. PubMed ID: 24718220
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metamaterial-based gradient index lens with strong focusing in the THz frequency range.
    Neu J; Krolla B; Paul O; Reinhard B; Beigang R; Rahm M
    Opt Express; 2010 Dec; 18(26):27748-57. PubMed ID: 21197049
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Active terahertz metamaterial devices.
    Chen HT; Padilla WJ; Zide JM; Gossard AC; Taylor AJ; Averitt RD
    Nature; 2006 Nov; 444(7119):597-600. PubMed ID: 17136089
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism of optical terahertz-transmission modulation in an organic/inorganic semiconductor interface and its application to active metamaterials.
    Matsui T; Takagi R; Takano K; Hangyo M
    Opt Lett; 2013 Nov; 38(22):4632-5. PubMed ID: 24322092
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Terahertz active spatial filtering through optically tunable hyperbolic metamaterials.
    Rizza C; Ciattoni A; Spinozzi E; Columbo L
    Opt Lett; 2012 Aug; 37(16):3345-7. PubMed ID: 23381252
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hybrid three-dimensional dual- and broadband optically tunable terahertz metamaterials.
    Meng Q; Zhong Z; Zhang B
    Sci Rep; 2017 Mar; 7():45708. PubMed ID: 28358357
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermal tunability in terahertz metamaterials fabricated on strontium titanate single-crystal substrates.
    Singh R; Azad AK; Jia QX; Taylor AJ; Chen HT
    Opt Lett; 2011 Apr; 36(7):1230-2. PubMed ID: 21479039
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Periodic large-area metallic split-ring resonator metamaterial fabrication based on shadow nanosphere lithography.
    Gwinner MC; Koroknay E; Fu L; Patoka P; Kandulski W; Giersig M; Giessen H
    Small; 2009 Mar; 5(3):400-6. PubMed ID: 19148886
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.