These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 21503076)

  • 1. Large refractive index changes of a chemically amplified photoresist in femtosecond laser nonlinear lithography.
    Mizoshiri M; Hirata Y; Nishii J; Nishiyama H
    Opt Express; 2011 Apr; 19(8):7673-9. PubMed ID: 21503076
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Waveguides fabricated by femtosecond laser exploiting both depressed cladding and stress-induced guiding core.
    Dong MM; Wang CW; Wu ZX; Zhang Y; Pan HH; Zhao QZ
    Opt Express; 2013 Jul; 21(13):15522-9. PubMed ID: 23842339
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Study of a chemically amplified resist for X-ray lithography by Fourier transform infrared spectroscopy.
    Tan TL; Wong D; Lee P; Rawat RS; Patran A
    Appl Spectrosc; 2004 Nov; 58(11):1288-94. PubMed ID: 18070406
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Time-resolved imaging of laser-induced refractive index changes in transparent media.
    Mermillod-Blondin A; Mauclair C; Bonse J; Stoian R; Audouard E; Rosenfeld A; Hertel IV
    Rev Sci Instrum; 2011 Mar; 82(3):033703. PubMed ID: 21456747
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exposure-dependent refractive index of Nanoscribe IP-Dip photoresist layers.
    Dottermusch S; Busko D; Langenhorst M; Paetzold UW; Richards BS
    Opt Lett; 2019 Jan; 44(1):29-32. PubMed ID: 30645537
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ion migration assisted inscription of high refractive index contrast waveguides by femtosecond laser pulses in phosphate glass.
    Toney Fernandez T; Haro-González P; Sotillo B; Hernandez M; Jaque D; Fernandez P; Domingo C; Siegel J; Solis J
    Opt Lett; 2013 Dec; 38(24):5248-51. PubMed ID: 24322229
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-contrast step-index waveguides in borate nonlinear laser crystals by 3D laser writing.
    Rodenas A; Kar AK
    Opt Express; 2011 Aug; 19(18):17820-33. PubMed ID: 21935150
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of femtosecond-laser induced nanostructures in optical memory.
    Shimotsuma Y; Sakakura M; Miura K; Qiu J; Kazansky PG; Fujita K; Hirao K
    J Nanosci Nanotechnol; 2007 Jan; 7(1):94-104. PubMed ID: 17455477
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measurement of nonlinear refractive index coefficient using emission spectrum of filament induced by gigawatt-femtosecond pulse in BK7 glass.
    Lu X; Liu Q; Liu Z; Sun S; Ding P; Ding B; Hu B
    Appl Opt; 2012 Apr; 51(12):2045-50. PubMed ID: 22534914
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Radiopaque Resists for Two-Photon Lithography To Enable Submicron 3D Imaging of Polymer Parts via X-ray Computed Tomography.
    Saha SK; Oakdale JS; Cuadra JA; Divin C; Ye J; Forien JB; Bayu Aji LB; Biener J; Smith WL
    ACS Appl Mater Interfaces; 2018 Jan; 10(1):1164-1172. PubMed ID: 29171264
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formation mechanism of element distribution in glass under femtosecond laser irradiation.
    Shimizu M; Sakakura M; Kanehira S; Nishi M; Shimotsuma Y; Hirao K; Miura K
    Opt Lett; 2011 Jun; 36(11):2161-3. PubMed ID: 21633482
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of femtosecond-laser-induced refractive-index changes in an optical fiber from far-field measurements.
    Savolainen JM; Grüner-Nielsen L; Kristensen P; Balling P
    Opt Lett; 2014 Jun; 39(12):3398-401. PubMed ID: 24978495
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D direct laser writing using a 405  nm diode laser.
    Mueller P; Thiel M; Wegener M
    Opt Lett; 2014 Dec; 39(24):6847-50. PubMed ID: 25503012
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-resolution laser lithography system based on two-dimensional acousto-optic deflection.
    Koechlin M; Poberaj G; Günter P
    Rev Sci Instrum; 2009 Aug; 80(8):085105. PubMed ID: 19725679
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Femtosecond laser microstructuring for polymeric lab-on-chips.
    Eaton SM; De Marco C; Martinez-Vazquez R; Ramponi R; Turri S; Cerullo G; Osellame R
    J Biophotonics; 2012 Aug; 5(8-9):687-702. PubMed ID: 22589025
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Femtosecond laser-induced microstructures in glasses and applications in micro-optics.
    Qiu J
    Chem Rec; 2004; 4(1):50-8. PubMed ID: 15057868
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low-repetition rate femtosecond laser writing of optical waveguides in KTP crystals: analysis of anisotropic refractive index changes.
    Butt MA; Nguyen HD; Ródenas A; Romero C; Moreno P; Vázquez de Aldana JR; Aguiló M; Solé RM; Pujol MC; Díaz F
    Opt Express; 2015 Jun; 23(12):15343-55. PubMed ID: 26193514
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Femtosecond laser fabricated fiber Bragg grating in microfiber for refractive index sensing.
    Fang X; Liao CR; Wang DN
    Opt Lett; 2010 Apr; 35(7):1007-9. PubMed ID: 20364199
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in the refractive index of the human corneal stroma during laser in situ keratomileusis. Effects of exposure time and method used to create the flap.
    Patel S; Alió JL; Artola A
    J Cataract Refract Surg; 2008 Jul; 34(7):1077-82. PubMed ID: 18571072
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly efficient Yb:YAG channel waveguide laser written with a femtosecond-laser.
    Siebenmorgen J; Calmano T; Petermann K; Huber G
    Opt Express; 2010 Jul; 18(15):16035-41. PubMed ID: 20720988
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.