These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 21503082)

  • 21. Apertureless near-field/far-field CW two-photon microscope for biological and material imaging and spectroscopic applications.
    Nowak DB; Lawrence AJ; Sánchez EJ
    Appl Opt; 2010 Dec; 49(35):6766-71. PubMed ID: 21151234
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Near-field spatial mapping of strongly interacting multiple plasmonic infrared antennas.
    Grefe SE; Leiva D; Mastel S; Dhuey SD; Cabrini S; Schuck PJ; Abate Y
    Phys Chem Chem Phys; 2013 Nov; 15(43):18944-50. PubMed ID: 24097054
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Low-Power Optical Trapping of Nanoparticles and Proteins with Resonant Coaxial Nanoaperture Using 10 nm Gap.
    Yoo D; Gurunatha KL; Choi HK; Mohr DA; Ertsgaard CT; Gordon R; Oh SH
    Nano Lett; 2018 Jun; 18(6):3637-3642. PubMed ID: 29763566
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Plasmonic interactions and optical forces between au bipyramidal nanoparticle dimers.
    Nome RA; Guffey MJ; Scherer NF; Gray SK
    J Phys Chem A; 2009 Apr; 113(16):4408-15. PubMed ID: 19267445
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Gap controlled plasmon-dielectric coupling effects investigated with single nanoparticle-terminated atomic force microscope probes.
    Huang Q; Teran Arce F; Lee J; Yoon I; Villanueva J; Lal R; Sirbuly DJ
    Nanoscale; 2016 Oct; 8(39):17102-17107. PubMed ID: 27714046
    [TBL] [Abstract][Full Text] [Related]  

  • 26. High NA particle- and tip-enhanced nanoscale Raman spectroscopy with a parabolic-mirror microscope.
    Stanciu C; Sackrow M; Meixner AJ
    J Microsc; 2008 Feb; 229(Pt 2):247-53. PubMed ID: 18304080
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nanogap effects on near- and far-field plasmonic behaviors of metallic nanoparticle dimers.
    Huang Y; Zhou Q; Hou M; Ma L; Zhang Z
    Phys Chem Chem Phys; 2015 Nov; 17(43):29293-8. PubMed ID: 26467684
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nanometer-scale optical imaging of epitaxially grown GaN and InN islands using apertureless near-field microscopy.
    Kim ZH; Liu B; Leone SR
    J Phys Chem B; 2005 May; 109(17):8503-8. PubMed ID: 16851999
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Second-harmonic spectroscopy of surface immobilized gold nanospheres above a gold surface supported by self-assembled monolayers.
    Tsuboi K; Abe S; Fukuba S; Shimojo M; Tanaka M; Furuya K; Fujita K; Kajikawa K
    J Chem Phys; 2006 Nov; 125(17):174703. PubMed ID: 17100457
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tip-enhanced near-field optical microscopy.
    Hartschuh A
    Angew Chem Int Ed Engl; 2008; 47(43):8178-91. PubMed ID: 18814153
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Assessing the structure and function of single biomolecules with scanning transmission electron and atomic force microscopes.
    Müller SA; Müller DJ; Engel A
    Micron; 2011 Feb; 42(2):186-95. PubMed ID: 21087869
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Near-field optical imaging of plasmon modes in gold nanorods.
    Imura K; Nagahara T; Okamoto H
    J Chem Phys; 2005 Apr; 122(15):154701. PubMed ID: 15945650
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nanogap biosensors for electrical and label-free detection of biomolecular interactions.
    Kyu Kim S; Cho H; Park HJ; Kwon D; Min Lee J; Hyun Chung B
    Nanotechnology; 2009 Nov; 20(45):455502. PubMed ID: 19822932
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Au double nanopillars with nanogap for plasmonic sensor.
    Kubo W; Fujikawa S
    Nano Lett; 2011 Jan; 11(1):8-15. PubMed ID: 21114297
    [TBL] [Abstract][Full Text] [Related]  

  • 36. High-resolution noncontact atomic force microscopy.
    Pérez R; García R; Schwarz U
    Nanotechnology; 2009 Jul; 20(26):260201. PubMed ID: 19531843
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Optical sensing and determination of complex reflection coefficients of plasmonic structures using transmission interferometric plasmonic sensor.
    Sannomiya T; Balmer TE; Hafner C; Heuberger M; Vörös J
    Rev Sci Instrum; 2010 May; 81(5):053102. PubMed ID: 20515119
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Stress characterization of Si by near-field Raman microscope using resonant scattering.
    Yoshikawa M; Murakami M
    Appl Spectrosc; 2006 May; 60(5):479-82. PubMed ID: 16756697
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bottom-up design of hybrid polymer nanoassemblies elucidates plasmon-enhanced second harmonic generation from nonlinear optical dyes.
    Ishifuji M; Mitsuishi M; Miyashita T
    J Am Chem Soc; 2009 Apr; 131(12):4418-24. PubMed ID: 19275159
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Imaging nanometre-sized hot spots on smooth au films with high-resolution tip-enhanced luminescence and Raman near-field optical microscopy.
    Sackrow M; Stanciu C; Lieb MA; Meixner AJ
    Chemphyschem; 2008 Feb; 9(2):316-20. PubMed ID: 18189253
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.