BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 21503323)

  • 1. Clean and modified substrates for direct detection of living cells by surface-enhanced Raman spectroscopy.
    Huang JY; Zong C; Xu LJ; Cui Y; Ren B
    Chem Commun (Camb); 2011 May; 47(20):5738-40. PubMed ID: 21503323
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Clean substrates prepared by chemical adsorption of iodide followed by electrochemical oxidation for surface-enhanced Raman spectroscopic study of cell membrane.
    Li MD; Cui Y; Gao MX; Luo J; Ren B; Tian ZQ
    Anal Chem; 2008 Jul; 80(13):5118-25. PubMed ID: 18489182
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimization of the preparation of glass-coated, dye-tagged metal nanoparticles as SERS substrates.
    Brown LO; Doorn SK
    Langmuir; 2008 Mar; 24(5):2178-85. PubMed ID: 18220434
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Essential nanogap effects on surface-enhanced Raman scattering signals from closely spaced gold nanoparticles.
    Yokota Y; Ueno K; Misawa H
    Chem Commun (Camb); 2011 Mar; 47(12):3505-7. PubMed ID: 21318204
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of human serum albumin through surface-enhanced Raman scattering using gold "pearl necklace" nanomaterials as substrates.
    Lin ZH; Chen IC; Chang HT
    Chem Commun (Camb); 2011 Jul; 47(25):7116-8. PubMed ID: 21614397
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Silica-void-gold nanoparticles: temporally stable surface-enhanced Raman scattering substrates.
    Roca M; Haes AJ
    J Am Chem Soc; 2008 Oct; 130(43):14273-9. PubMed ID: 18831552
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of surface water on Au core Pt-group metal shell nanoparticles coated electrodes by surface-enhanced Raman spectroscopy.
    Jiang YX; Li JF; Wu DY; Yang ZL; Ren B; Hu JW; Chow YL; Tian ZQ
    Chem Commun (Camb); 2007 Nov; (44):4608-10. PubMed ID: 17989807
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface-enhanced Raman spectroscopic detection of a bacteria biomarker using gold nanoparticle immobilized substrates.
    Cheng HW; Huan SY; Wu HL; Shen GL; Yu RQ
    Anal Chem; 2009 Dec; 81(24):9902-12. PubMed ID: 19928907
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface-enhanced Raman spectroscopy: substrate-related issues.
    Lin XM; Cui Y; Xu YH; Ren B; Tian ZQ
    Anal Bioanal Chem; 2009 Aug; 394(7):1729-45. PubMed ID: 19381618
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-assembled Au nanoparticles as substrates for surface-enhanced vibrational spectroscopy: optimization and electrochemical stability.
    Fan M; Brolo AG
    Chemphyschem; 2008 Sep; 9(13):1899-907. PubMed ID: 18704901
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An approach for fabricating self-assembled monolayer of gold nanoparticles on NH2(+) ion implantation modified indium tin oxide as the SERS-active substrate.
    Li S; Liu L; Hu J
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Feb; 86():533-7. PubMed ID: 22137745
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aligned gold nanoneedle arrays for surface-enhanced Raman scattering.
    Yang Y; Tanemura M; Huang Z; Jiang D; Li ZY; Huang YP; Kawamura G; Yamaguchi K; Nogami M
    Nanotechnology; 2010 Aug; 21(32):325701. PubMed ID: 20639588
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multilayer structures of self-assembled gold nanoparticles as a unique SERS and SEIRA substrate.
    Baia M; Toderas F; Baia L; Maniu D; Astilean S
    Chemphyschem; 2009 May; 10(7):1106-11. PubMed ID: 19322798
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A reproducible SERS substrate based on electrostatically assisted APTES-functionalized surface-assembly of gold nanostars.
    Su Q; Ma X; Dong J; Jiang C; Qian W
    ACS Appl Mater Interfaces; 2011 Jun; 3(6):1873-9. PubMed ID: 21528839
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein-based SERS technology monitoring the chemical reactivity on an α-synuclein-mediated two-dimensional array of gold nanoparticles.
    Lee D; Choe YJ; Lee M; Jeong DH; Paik SR
    Langmuir; 2011 Nov; 27(21):12782-7. PubMed ID: 21942274
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SERS studies of the adsorption of guanine derivatives on gold colloidal nanoparticles.
    Pergolese B; Bonifacio A; Bigotto A
    Phys Chem Chem Phys; 2005 Oct; 7(20):3610-3. PubMed ID: 16294239
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of AgcoreAushell bimetallic nanoparticles for immunoassay based on surface-enhanced Raman spectroscopy.
    Cui Y; Ren B; Yao JL; Gu RA; Tian ZQ
    J Phys Chem B; 2006 Mar; 110(9):4002-6. PubMed ID: 16509689
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of gold nanoparticle-embedded metal-organic framework for highly sensitive surface-enhanced Raman scattering detection.
    Hu Y; Liao J; Wang D; Li G
    Anal Chem; 2014 Apr; 86(8):3955-63. PubMed ID: 24646316
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ordered gold nanoparticle arrays as surface-enhanced Raman spectroscopy substrates for label-free detection of nitroexplosives.
    Liu X; Zhao L; Shen H; Xu H; Lu L
    Talanta; 2011 Jan; 83(3):1023-9. PubMed ID: 21147353
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.