These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 21503649)

  • 1. Investigating human audio-visual object perception with a combination of hypothesis-generating and hypothesis-testing fMRI analysis tools.
    Naumer MJ; van den Bosch JJ; Wibral M; Kohler A; Singer W; Kaiser J; van de Ven V; Muckli L
    Exp Brain Res; 2011 Sep; 213(2-3):309-20. PubMed ID: 21503649
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Retinotopic effects during spatial audio-visual integration.
    Meienbrock A; Naumer MJ; Doehrmann O; Singer W; Muckli L
    Neuropsychologia; 2007 Feb; 45(3):531-9. PubMed ID: 16797610
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An additive-factors design to disambiguate neuronal and areal convergence: measuring multisensory interactions between audio, visual, and haptic sensory streams using fMRI.
    Stevenson RA; Kim S; James TW
    Exp Brain Res; 2009 Sep; 198(2-3):183-94. PubMed ID: 19352638
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Statistical criteria in FMRI studies of multisensory integration.
    Beauchamp MS
    Neuroinformatics; 2005; 3(2):93-113. PubMed ID: 15988040
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distinct functional contributions of primary sensory and association areas to audiovisual integration in object categorization.
    Werner S; Noppeney U
    J Neurosci; 2010 Feb; 30(7):2662-75. PubMed ID: 20164350
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatial attention evokes similar activation patterns for visual and auditory stimuli.
    Smith DV; Davis B; Niu K; Healy EW; Bonilha L; Fridriksson J; Morgan PS; Rorden C
    J Cogn Neurosci; 2010 Feb; 22(2):347-61. PubMed ID: 19400684
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic changes in the mental rotation network revealed by pattern recognition analysis of fMRI data.
    Mourao-Miranda J; Ecker C; Sato JR; Brammer M
    J Cogn Neurosci; 2009 May; 21(5):890-904. PubMed ID: 18702583
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multisensory perception of action in posterior temporal and parietal cortices.
    James TW; VanDerKlok RM; Stevenson RA; James KH
    Neuropsychologia; 2011 Jan; 49(1):108-14. PubMed ID: 21036183
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Approaching the Ground Truth: Revealing the Functional Organization of Human Multisensory STC Using Ultra-High Field fMRI.
    Gentile F; van Atteveldt N; De Martino F; Goebel R
    J Neurosci; 2017 Oct; 37(42):10104-10113. PubMed ID: 28912157
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced multisensory integration and motor reactivation after active motor learning of audiovisual associations.
    Butler AJ; James TW; James KH
    J Cogn Neurosci; 2011 Nov; 23(11):3515-28. PubMed ID: 21452947
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Utilizing the ventriloquism-effect to investigate audio-visual binding.
    Bischoff M; Walter B; Blecker CR; Morgen K; Vaitl D; Sammer G
    Neuropsychologia; 2007 Feb; 45(3):578-86. PubMed ID: 16620884
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Key issues in decomposing fMRI during naturalistic and continuous music experience with independent component analysis.
    Cong F; Puoliväli T; Alluri V; Sipola T; Burunat I; Toiviainen P; Nandi AK; Brattico E; Ristaniemi T
    J Neurosci Methods; 2014 Feb; 223():74-84. PubMed ID: 24333752
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temporal characteristics of audiovisual information processing.
    Fuhrmann Alpert G; Hein G; Tsai N; Naumer MJ; Knight RT
    J Neurosci; 2008 May; 28(20):5344-9. PubMed ID: 18480290
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distinct auditory and visual tool regions with multisensory response properties in human parietal cortex.
    Kassuba T; Pinsk MA; Kastner S
    Prog Neurobiol; 2020 Dec; 195():101889. PubMed ID: 32707071
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of the anterior insular cortex in integrative causal signaling during multisensory auditory-visual attention.
    Chen T; Michels L; Supekar K; Kochalka J; Ryali S; Menon V
    Eur J Neurosci; 2015 Jan; 41(2):264-74. PubMed ID: 25352218
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Look Hear! The Prefrontal Cortex is Stratified by Modality of Sensory Input During Multisensory Cognitive Control.
    Mayer AR; Ryman SG; Hanlon FM; Dodd AB; Ling JM
    Cereb Cortex; 2017 May; 27(5):2831-2840. PubMed ID: 27166168
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Perceptual decisions formed by accumulation of audiovisual evidence in prefrontal cortex.
    Noppeney U; Ostwald D; Werner S
    J Neurosci; 2010 May; 30(21):7434-46. PubMed ID: 20505110
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Audiovisual non-verbal dynamic faces elicit converging fMRI and ERP responses.
    Brefczynski-Lewis J; Lowitszch S; Parsons M; Lemieux S; Puce A
    Brain Topogr; 2009 May; 21(3-4):193-206. PubMed ID: 19384602
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Semantics and the multisensory brain: how meaning modulates processes of audio-visual integration.
    Doehrmann O; Naumer MJ
    Brain Res; 2008 Nov; 1242():136-50. PubMed ID: 18479672
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unraveling multisensory integration: patchy organization within human STS multisensory cortex.
    Beauchamp MS; Argall BD; Bodurka J; Duyn JH; Martin A
    Nat Neurosci; 2004 Nov; 7(11):1190-2. PubMed ID: 15475952
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.