These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 21503834)

  • 21. Long-term behaviours of Autocatalytic Sets.
    Ravoni A
    J Theor Biol; 2021 Nov; 529():110860. PubMed ID: 34389361
    [TBL] [Abstract][Full Text] [Related]  

  • 22. From reaction networks to information flow--using modular response analysis to track information in signaling networks.
    Schulthess P; Blüthgen N
    Methods Enzymol; 2011; 500():397-409. PubMed ID: 21943908
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Compositional complementarity and prebiotic ecology in the origin of life.
    Hunding A; Kepes F; Lancet D; Minsky A; Norris V; Raine D; Sriram K; Root-Bernstein R
    Bioessays; 2006 Apr; 28(4):399-412. PubMed ID: 16547956
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Joining and decomposing reaction networks.
    Gross E; Harrington H; Meshkat N; Shiu A
    J Math Biol; 2020 May; 80(6):1683-1731. PubMed ID: 32123964
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Autocatalytic sets and biological specificity.
    Hordijk W; Wills PR; Steel M
    Bull Math Biol; 2014 Jan; 76(1):201-24. PubMed ID: 24233808
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Product-form stationary distributions for deficiency zero chemical reaction networks.
    Anderson DF; Craciun G; Kurtz TG
    Bull Math Biol; 2010 Nov; 72(8):1947-70. PubMed ID: 20306147
    [TBL] [Abstract][Full Text] [Related]  

  • 27. New Markov-Shannon Entropy models to assess connectivity quality in complex networks: from molecular to cellular pathway, Parasite-Host, Neural, Industry, and Legal-Social networks.
    Riera-Fernández P; Munteanu CR; Escobar M; Prado-Prado F; Martín-Romalde R; Pereira D; Villalba K; Duardo-Sánchez A; González-Díaz H
    J Theor Biol; 2012 Jan; 293():174-88. PubMed ID: 22037044
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Computing algebraic functions with biochemical reaction networks.
    Buisman HJ; ten Eikelder HM; Hilbers PA; Liekens AM
    Artif Life; 2009; 15(1):5-19. PubMed ID: 18855568
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dynamics of autocatalytic replicator networks based on higher-order ligation reactions.
    Stadler BM; Stadler PF; Schuster P
    Bull Math Biol; 2000 Nov; 62(6):1061-86. PubMed ID: 11127514
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A computational approach to persistence, permanence, and endotacticity of biochemical reaction systems.
    Johnston MD; Pantea C; Donnell P
    J Math Biol; 2016 Jan; 72(1-2):467-98. PubMed ID: 25986743
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Required levels of catalysis for emergence of autocatalytic sets in models of chemical reaction systems.
    Hordijk W; Kauffman SA; Steel M
    Int J Mol Sci; 2011; 12(5):3085-101. PubMed ID: 21686171
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Toward the automated generation of genome-scale metabolic networks in the SEED.
    DeJongh M; Formsma K; Boillot P; Gould J; Rycenga M; Best A
    BMC Bioinformatics; 2007 Apr; 8():139. PubMed ID: 17462086
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Autocatalytic networks in biology: structural theory and algorithms.
    Steel M; Hordijk W; Xavier JC
    J R Soc Interface; 2019 Feb; 16(151):20180808. PubMed ID: 30958202
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A Petri net approach to the study of persistence in chemical reaction networks.
    Angeli D; De Leenheer P; Sontag ED
    Math Biosci; 2007 Dec; 210(2):598-618. PubMed ID: 17869313
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A topological approach to chemical organizations.
    Benkö G; Centler F; Dittrich P; Flamm C; Stadler BM; Stadler PF
    Artif Life; 2009; 15(1):71-88. PubMed ID: 18855563
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Scaling theory of transport in complex biological networks.
    Gallos LK; Song C; Havlin S; Makse HA
    Proc Natl Acad Sci U S A; 2007 May; 104(19):7746-51. PubMed ID: 17470793
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Chemical reaction network approaches to Biochemical Systems Theory.
    Arceo CP; Jose EC; Marin-Sanguino A; Mendoza ER
    Math Biosci; 2015 Nov; 269():135-52. PubMed ID: 26363083
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Recent progress in asymmetric bifunctional catalysis using multimetallic systems.
    Shibasaki M; Kanai M; Matsunaga S; Kumagai N
    Acc Chem Res; 2009 Aug; 42(8):1117-27. PubMed ID: 19435320
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Darwinian properties and their trade-offs in autocatalytic RNA reaction networks.
    Ameta S; Arsène S; Foulon S; Saudemont B; Clifton BE; Griffiths AD; Nghe P
    Nat Commun; 2021 Feb; 12(1):842. PubMed ID: 33558542
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The Expected Number of Viable Autocatalytic Sets in Chemical Reaction Systems.
    Kauffman S; Steel M
    Artif Life; 2021 Mar; 27(1):1-14. PubMed ID: 34529753
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.