These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 21503834)

  • 41. The Expected Number of Viable Autocatalytic Sets in Chemical Reaction Systems.
    Kauffman S; Steel M
    Artif Life; 2021 Mar; 27(1):1-14. PubMed ID: 34529753
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Crystallographic analysis of the reaction pathway of Zoogloea ramigera biosynthetic thiolase.
    Modis Y; Wierenga RK
    J Mol Biol; 2000 Apr; 297(5):1171-82. PubMed ID: 10764581
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Multistationarity and Bistability for Fewnomial Chemical Reaction Networks.
    Feliu E; Helmer M
    Bull Math Biol; 2019 Apr; 81(4):1089-1121. PubMed ID: 30564990
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Modelling metabolic networks using power-laws and S-systems.
    Voit EO
    Essays Biochem; 2008; 45():29-40. PubMed ID: 18793121
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A computational tool for Monte Carlo simulations of biomolecular reaction networks modeled on physical principles.
    Li IT; Mills E; Truong K
    IEEE Trans Nanobioscience; 2010 Mar; 9(1):24-30. PubMed ID: 19887331
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Regulatory patterns in molecular interaction networks.
    Murrugarra D; Laubenbacher R
    J Theor Biol; 2011 Nov; 288():66-72. PubMed ID: 21872607
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Fault diagnosis engineering in molecular signaling networks: an overview and applications in target discovery.
    Abdi A; Emamian ES
    Chem Biodivers; 2010 May; 7(5):1111-23. PubMed ID: 20491069
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Concordant chemical reaction networks and the Species-Reaction Graph.
    Shinar G; Feinberg M
    Math Biosci; 2013 Jan; 241(1):1-23. PubMed ID: 22940368
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Autocatalytic chemical networks at the origin of metabolism.
    Xavier JC; Hordijk W; Kauffman S; Steel M; Martin WF
    Proc Biol Sci; 2020 Mar; 287(1922):20192377. PubMed ID: 32156207
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The origin of large molecules in primordial autocatalytic reaction networks.
    Giri V; Jain S
    PLoS One; 2012; 7(1):e29546. PubMed ID: 22238620
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Triggered reversible substitution of adaptive constitutional dynamic networks dictates programmed catalytic functions.
    Yue L; Wang S; Willner I
    Sci Adv; 2019 May; 5(5):eaav5564. PubMed ID: 31093526
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Independent Decompositions of Chemical Reaction Networks.
    Hernandez BS; De la Cruz RJL
    Bull Math Biol; 2021 May; 83(7):76. PubMed ID: 34008093
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Evolution of Autocatalytic Sets in Computational Models of Chemical Reaction Networks.
    Hordijk W
    Orig Life Evol Biosph; 2016 Jun; 46(2-3):233-45. PubMed ID: 26499126
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Ubiquitous "glassy" relaxation in catalytic reaction networks.
    Awazu A; Kaneko K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Oct; 80(4 Pt 1):041931. PubMed ID: 19905366
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Stoechiometric and dynamical autocatalysis for diluted chemical reaction networks.
    Unterberger J; Nghe P
    J Math Biol; 2022 Sep; 85(3):26. PubMed ID: 36071258
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Variable elimination in post-translational modification reaction networks with mass-action kinetics.
    Feliu E; Wiuf C
    J Math Biol; 2013 Jan; 66(1-2):281-310. PubMed ID: 22311196
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Computational identification of obligatorily autocatalytic replicators embedded in metabolic networks.
    Kun A; Papp B; Szathmáry E
    Genome Biol; 2008; 9(3):R51. PubMed ID: 18331628
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A global convergence result for processive multisite phosphorylation systems.
    Conradi C; Shiu A
    Bull Math Biol; 2015 Jan; 77(1):126-55. PubMed ID: 25549624
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Multistationarity in the Space of Total Concentrations for Systems that Admit a Monomial Parametrization.
    Conradi C; Iosif A; Kahle T
    Bull Math Biol; 2019 Oct; 81(10):4174-4209. PubMed ID: 31332598
    [TBL] [Abstract][Full Text] [Related]  

  • 60. On the multistationarity of chemical reaction networks.
    Kaufman M; Soulé C
    J Theor Biol; 2019 Mar; 465():126-133. PubMed ID: 30633882
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.