These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
232 related articles for article (PubMed ID: 21504010)
1. Facility monitoring of chemical warfare agent simulants in air using an automated, field-deployable, miniature mass spectrometer. Smith JN; Noll RJ; Cooks RG Rapid Commun Mass Spectrom; 2011 May; 25(10):1437-44. PubMed ID: 21504010 [TBL] [Abstract][Full Text] [Related]
2. Facility monitoring of toxic industrial compounds in air using an automated, fieldable, miniature mass spectrometer. Smith JN; Keil A; Likens J; Noll RJ; Cooks RG Analyst; 2010 May; 135(5):994-1003. PubMed ID: 20419248 [TBL] [Abstract][Full Text] [Related]
3. Physics-based agent to simulant correlations for vapor phase mass transport. Willis MP; Varady MJ; Pearl TP; Fouse JC; Riley PC; Mantooth BA; Lalain TA J Hazard Mater; 2013 Dec; 263 Pt 2():479-85. PubMed ID: 24225584 [TBL] [Abstract][Full Text] [Related]
4. Detection of chemical weapon agents and simulants using chemical ionization reaction time-of-flight mass spectrometry. Cordell RL; Willis KA; Wyche KP; Blake RS; Ellis AM; Monks PS Anal Chem; 2007 Nov; 79(21):8359-66. PubMed ID: 17894471 [TBL] [Abstract][Full Text] [Related]
5. Analysis of gaseous toxic industrial compounds and chemical warfare agent simulants by atmospheric pressure ionization mass spectrometry. Cotte-Rodríguez I; Justes DR; Nanita SC; Noll RJ; Mulligan CC; Sanders NL; Cooks RG Analyst; 2006 Apr; 131(4):579-89. PubMed ID: 16568176 [TBL] [Abstract][Full Text] [Related]
6. Development of portable mass spectrometer with electron cyclotron resonance ion source for detection of chemical warfare agents in air. Urabe T; Takahashi K; Kitagawa M; Sato T; Kondo T; Enomoto S; Kidera M; Seto Y Spectrochim Acta A Mol Biomol Spectrosc; 2014; 120():437-44. PubMed ID: 24211802 [TBL] [Abstract][Full Text] [Related]
7. Improved detection of low vapor pressure compounds in air by serial combination of single-sided membrane introduction with fiber introduction mass spectrometry (SS-MIMS-FIMS). Cotte-Rodríguez I; Handberg E; Noll RJ; Kilgour DP; Cooks RG Analyst; 2005 May; 130(5):679-86. PubMed ID: 15852137 [TBL] [Abstract][Full Text] [Related]
8. Measurement of breakthrough volumes of volatile chemical warfare agents on a poly(2,6-diphenylphenylene oxide)-based adsorbent and application to thermal desorption-gas chromatography/mass spectrometric analysis. Kanamori-Kataoka M; Seto Y J Chromatogr A; 2015 Sep; 1410():19-27. PubMed ID: 26239699 [TBL] [Abstract][Full Text] [Related]
9. Using metal complex ion-molecule reactions in a miniature rectilinear ion trap mass spectrometer to detect chemical warfare agents. Graichen AM; Vachet RW J Am Soc Mass Spectrom; 2013 Jun; 24(6):917-25. PubMed ID: 23532782 [TBL] [Abstract][Full Text] [Related]
10. Improving Quantification of tabun, sarin, soman, cyclosarin, and sulfur mustard by focusing agents: A field portable gas chromatography-mass spectrometry study. Kelly JT; Qualley A; Hughes GT; Rubenstein MH; Malloy TA; Piatkowski T J Chromatogr A; 2021 Jan; 1636():461784. PubMed ID: 33360649 [TBL] [Abstract][Full Text] [Related]
11. Development of a palm portable mass spectrometer. Yang M; Kim TY; Hwang HC; Yi SK; Kim DH J Am Soc Mass Spectrom; 2008 Oct; 19(10):1442-8. PubMed ID: 18565759 [TBL] [Abstract][Full Text] [Related]
12. Raman Spectroscopic Detection for Simulants of Chemical Warfare Agents Using a Spatial Heterodyne Spectrometer. Hu G; Xiong W; Luo H; Shi H; Li Z; Shen J; Fang X; Xu B; Zhang J Appl Spectrosc; 2018 Jan; 72(1):151-158. PubMed ID: 28627233 [TBL] [Abstract][Full Text] [Related]
13. Desorption electrospray ionization mass spectrometric analysis of organophosphorus chemical warfare agents using ion mobility and tandem mass spectrometry. D'Agostino PA; Chenier CL Rapid Commun Mass Spectrom; 2010 Jun; 24(11):1617-24. PubMed ID: 20486257 [TBL] [Abstract][Full Text] [Related]
14. Desorption of sulphur mustard simulants methyl salicylate and 2-chloroethyl ethyl sulphide from contaminated scalp hair after vapour exposure. Spiandore M; Souilah-Edib M; Piram A; Lacoste A; Josse D; Doumenq P Chemosphere; 2018 Jan; 191():721-728. PubMed ID: 29078194 [TBL] [Abstract][Full Text] [Related]
15. GC-MS/MS quantification of benzyl salicylate on skin and hair: A novel chemical simulant for human decontamination studies. James T; Collins S; Amlôt R; Marczylo T J Chromatogr B Analyt Technol Biomed Life Sci; 2019 Oct; 1129():121818. PubMed ID: 31670058 [TBL] [Abstract][Full Text] [Related]
16. Secondary ionization of chemical warfare agent simulants: atmospheric pressure ion mobility time-of-flight mass spectrometry. Steiner WE; Clowers BH; Haigh PE; Hill HH Anal Chem; 2003 Nov; 75(22):6068-76. PubMed ID: 14615983 [TBL] [Abstract][Full Text] [Related]
17. Detection of chemical warfare agent simulants and hydrolysis products in biological samples by paper spray mass spectrometry. McKenna J; Dhummakupt ES; Connell T; Demond PS; Miller DB; Michael Nilles J; Manicke NE; Glaros T Analyst; 2017 May; 142(9):1442-1451. PubMed ID: 28338135 [TBL] [Abstract][Full Text] [Related]
18. Efficacy of scalp hair decontamination following exposure to vapours of sulphur mustard simulants 2-chloroethyl ethyl sulphide and methyl salicylate. Spiandore M; Piram A; Lacoste A; Prevost P; Maloni P; Torre F; Asia L; Josse D; Doumenq P Chem Biol Interact; 2017 Apr; 267():74-79. PubMed ID: 27492218 [TBL] [Abstract][Full Text] [Related]
19. Sensitive and comprehensive detection of chemical warfare agents in air by atmospheric pressure chemical ionization ion trap tandem mass spectrometry with counterflow introduction. Seto Y; Sekiguchi H; Maruko H; Yamashiro S; Sano Y; Takayama Y; Sekioka R; Yamaguchi S; Kishi S; Satoh T; Sekiguchi H; Iura K; Nagashima H; Nagoya T; Tsuge K; Ohsawa I; Okumura A; Takada Y; Ezawa N; Watanabe S; Hashimoto H Anal Chem; 2014 May; 86(9):4316-26. PubMed ID: 24678766 [TBL] [Abstract][Full Text] [Related]
20. Single-particle aerosol mass spectrometry for the detection and identification of chemical warfare agent simulants. Martin AN; Farquar GR; Frank M; Gard EE; Fergenson DP Anal Chem; 2007 Aug; 79(16):6368-75. PubMed ID: 17630721 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]