These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
90 related articles for article (PubMed ID: 21504152)
1. A molecular mechanism of hydrolysis of peptide bonds at neutral pH using a model compound. Pan B; Ricci MS; Trout BL J Phys Chem B; 2011 May; 115(19):5958-70. PubMed ID: 21504152 [TBL] [Abstract][Full Text] [Related]
2. Molecular mechanism of acid-catalyzed hydrolysis of peptide bonds using a model compound. Pan B; Ricci MS; Trout BL J Phys Chem B; 2010 Apr; 114(13):4389-99. PubMed ID: 20297769 [TBL] [Abstract][Full Text] [Related]
3. Sequence-specific Ni(II)-dependent peptide bond hydrolysis for protein engineering: reaction conditions and molecular mechanism. Kopera E; Krezel A; Protas AM; Belczyk A; Bonna A; Wysłouch-Cieszyńska A; Poznański J; Bal W Inorg Chem; 2010 Jul; 49(14):6636-45. PubMed ID: 20550138 [TBL] [Abstract][Full Text] [Related]
4. Generation of initial trajectories for transition path sampling of chemical reactions with ab initio molecular dynamics. Rowley CN; Woo TK J Chem Phys; 2007 Jan; 126(2):024110. PubMed ID: 17228946 [TBL] [Abstract][Full Text] [Related]
5. Quantum mechanics/molecular mechanics minimum free-energy path for accurate reaction energetics in solution and enzymes: sequential sampling and optimization on the potential of mean force surface. Hu H; Lu Z; Parks JM; Burger SK; Yang W J Chem Phys; 2008 Jan; 128(3):034105. PubMed ID: 18205486 [TBL] [Abstract][Full Text] [Related]
6. Theoretical study of the neutral hydrolysis of hydrogen isocyanate in aqueous solution via assisted-concerted mechanisms. Tolosa Arroyo S; Hidalgo Garcia A; Sansón Martín JA J Phys Chem A; 2009 Mar; 113(9):1858-63. PubMed ID: 19209882 [TBL] [Abstract][Full Text] [Related]
7. Calculating geochemical reaction pathways--exploration of the inner-sphere water exchange mechanism in Al(H2O)6(3+)(aq) + nH2O with ab Initio calculations and molecular dynamics. Evans RJ; Rustad JR; Casey WH J Phys Chem A; 2008 May; 112(17):4125-40. PubMed ID: 18366199 [TBL] [Abstract][Full Text] [Related]
8. Peptide synthesis in aqueous environments: the role of extreme conditions on peptide bond formation and peptide hydrolysis. Schreiner E; Nair NN; Marx D J Am Chem Soc; 2009 Sep; 131(38):13668-75. PubMed ID: 19725519 [TBL] [Abstract][Full Text] [Related]
10. O-N intramolecular acyl migration reaction in the development of prodrugs and the synthesis of difficult sequence-containing bioactive peptides. Sohma Y; Hayashi Y; Skwarczynski M; Hamada Y; Sasaki M; Kimura T; Kiso Y Biopolymers; 2004; 76(4):344-56. PubMed ID: 15386265 [TBL] [Abstract][Full Text] [Related]
11. Direct determination of reaction paths and stationary points on potential of mean force surfaces. Li G; Cui Q J Mol Graph Model; 2005 Oct; 24(2):82-93. PubMed ID: 16005650 [TBL] [Abstract][Full Text] [Related]
12. Palladium(II) complex as a sequence-specific peptidase: hydrolytic cleavage under mild conditions of X-Pro peptide bonds in X-Pro-Met and X-Pro-His segments. Milović NM; Kostić NM J Am Chem Soc; 2003 Jan; 125(3):781-8. PubMed ID: 12526679 [TBL] [Abstract][Full Text] [Related]
13. Computational analysis of the mechanism of chemical reactions in terms of reaction phases: hidden intermediates and hidden transition States. Kraka E; Cremer D Acc Chem Res; 2010 May; 43(5):591-601. PubMed ID: 20232791 [TBL] [Abstract][Full Text] [Related]
14. The mechanism of formamide hydrolysis in water from ab initio calculations and simulations. Gorb L; Asensio A; Tuñón I; Ruiz-López MF Chemistry; 2005 Nov; 11(22):6743-53. PubMed ID: 16130156 [TBL] [Abstract][Full Text] [Related]
15. Reaction-path energetics and kinetics of the hydride transfer reaction catalyzed by dihydrofolate reductase. Garcia-Viloca M; Truhlar DG; Gao J Biochemistry; 2003 Nov; 42(46):13558-75. PubMed ID: 14622003 [TBL] [Abstract][Full Text] [Related]
16. Peptide hydrolysis catalyzed by matrix metalloproteinase 2: a computational study. Díaz N; Suárez D J Phys Chem B; 2008 Jul; 112(28):8412-24. PubMed ID: 18570467 [TBL] [Abstract][Full Text] [Related]
17. Hydrolysis of 4-nitrophenyl acetate by a (N2S(thiolate))zinc hydroxide complex: a model of the catalytically active intermediate for the zinc form of peptide deformylase. diTargiani RC; Chang S; Salter MH; Hancock RD; Goldberg DP Inorg Chem; 2003 Sep; 42(19):5825-36. PubMed ID: 12971750 [TBL] [Abstract][Full Text] [Related]
18. Hydrolysis of poly(alkylene amidophosphate)s containing amino acid or peptide residues in the side groups. Kinetics and selectivity of hydrolysis. Baran J; Kaluzynski K; Szymanski R; Penczek S Biomacromolecules; 2004; 5(5):1841-8. PubMed ID: 15360296 [TBL] [Abstract][Full Text] [Related]
19. Understanding regioselective cleavage in peptide hydrolysis by a palladium(II) aqua complex: a theoretical point of view. Yeguas V; Campomanes P; López R; Díaz N; Suárez D J Phys Chem B; 2010 Jul; 114(25):8525-35. PubMed ID: 20527949 [TBL] [Abstract][Full Text] [Related]
20. Two conformational states of Turkey ovomucoid third domain at low pH: three-dimensional structures, internal dynamics, and interconversion kinetics and thermodynamics. Song J; Laskowski M; Qasim MA; Markley JL Biochemistry; 2003 Jun; 42(21):6380-91. PubMed ID: 12767219 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]