These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

325 related articles for article (PubMed ID: 21504733)

  • 41. Orientational dynamics of indane dione spin-labeled myosin heads in relaxed and contracting skeletal muscle fibers.
    Roopnarine O; Thomas DD
    Biophys J; 1995 Apr; 68(4):1461-71. PubMed ID: 7787032
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Tail Length and E525K Dilated Cardiomyopathy Mutant Alter Human β-Cardiac Myosin Super-Relaxed State.
    Duno-Miranda S; Nelson SR; Rasicci DV; Bodt SLM; Cirilo JA; Vang D; Sivaramakrishnan S; Yengo CM; Warshaw DM
    bioRxiv; 2023 Dec; ():. PubMed ID: 38105932
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Fluorescence polarization transients from rhodamine isomers on the myosin regulatory light chain in skeletal muscle fibers.
    Hopkins SC; Sabido-David C; Corrie JE; Irving M; Goldman YE
    Biophys J; 1998 Jun; 74(6):3093-110. PubMed ID: 9635763
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The slow skeletal muscle isoform of myosin shows kinetic features common to smooth and non-muscle myosins.
    Iorga B; Adamek N; Geeves MA
    J Biol Chem; 2007 Feb; 282(6):3559-70. PubMed ID: 17130133
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Resolution of three structural states of spin-labeled myosin in contracting muscle.
    Ostap EM; Barnett VA; Thomas DD
    Biophys J; 1995 Jul; 69(1):177-88. PubMed ID: 7669895
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Functional divergence of the sarcomeric myosin, MYH7b, supports species-specific biological roles.
    Lee LA; Barrick SK; Meller A; Walklate J; Lotthammer JM; Tay JW; Stump WT; Bowman G; Geeves MA; Greenberg MJ; Leinwand LA
    J Biol Chem; 2023 Jan; 299(1):102657. PubMed ID: 36334627
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Persisting in vitro actin motility at nanomolar adenosine triphosphate levels: comparison of skeletal and cardiac myosins.
    Kellermayer MS; Hinds TR; Pollack GH
    Physiol Chem Phys Med NMR; 1995; 27(3):167-78. PubMed ID: 8868577
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Kinetics of relaxation from rigor of permeabilized fast-twitch skeletal fibers from the rabbit using a novel caged ATP and apyrase.
    Thirlwell H; Corrie JE; Reid GP; Trentham DR; Ferenczi MA
    Biophys J; 1994 Dec; 67(6):2436-47. PubMed ID: 7696482
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Structural basis of the super- and hyper-relaxed states of myosin II.
    Craig R; Padrón R
    J Gen Physiol; 2022 Jan; 154(1):. PubMed ID: 34889960
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The kinetics of magnesium adenosine triphosphate cleavage in skinned muscle fibres of the rabbit.
    Ferenczi MA; Homsher E; Trentham DR
    J Physiol; 1984 Jul; 352():575-99. PubMed ID: 6611412
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Myosin binding-induced cooperative activation of the thin filament in cardiac myocytes and skeletal muscle fibers.
    Metzger JM
    Biophys J; 1995 Apr; 68(4):1430-42. PubMed ID: 7787029
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Enzymatic activities and ATP-induced fluorescence enhancement of myosin from fast and slow skeletal and cardiac muscles.
    Graceffa P; Seidel JC
    Biochim Biophys Acta; 1979 May; 578(1):223-31. PubMed ID: 156560
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Load-dependent mechanical efficiency of individual myosin heads in skeletal muscle fibers activated by laser flash photolysis of caged calcium in the presence of a limited amount of ATP.
    Sugi H; Iwamoto H; Akimoto T; Ushitani H
    Adv Exp Med Biol; 1998; 453():557-66; discussion 567. PubMed ID: 9889868
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Altered force generation and cell-to-cell contractile imbalance in hypertrophic cardiomyopathy.
    Kraft T; Montag J
    Pflugers Arch; 2019 May; 471(5):719-733. PubMed ID: 30740621
    [TBL] [Abstract][Full Text] [Related]  

  • 55. pH dependence of myosin binding-induced activation of the thin filament in cardiac myocytes and skeletal fibers.
    Metzger JM
    Am J Physiol; 1996 Mar; 270(3 Pt 2):H1008-14. PubMed ID: 8780197
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Mechanistic analysis of actin-binding compounds that affect the kinetics of cardiac myosin-actin interaction.
    Roopnarine O; Thomas DD
    J Biol Chem; 2021; 296():100471. PubMed ID: 33639160
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Fluorescence polarization of skeletal muscle fibers labeled with rhodamine isomers on the myosin heavy chain.
    Berger CL; Craik JS; Trentham DR; Corrie JE; Goldman YE
    Biophys J; 1996 Dec; 71(6):3330-43. PubMed ID: 8968602
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Sliding distance per ATP molecule hydrolyzed by myosin heads during isotonic shortening of skinned muscle fibers.
    Higuchi H; Goldman YE
    Biophys J; 1995 Oct; 69(4):1491-507. PubMed ID: 8534820
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Myosin Heavy Chain as a Novel Key Modulator of Striated Muscle Resting State.
    Lewis CTA; Ochala J
    Physiology (Bethesda); 2023 Jan; 38(1):0. PubMed ID: 36067133
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A small-molecule modulator of cardiac myosin acts on multiple stages of the myosin chemomechanical cycle.
    Kawas RF; Anderson RL; Ingle SRB; Song Y; Sran AS; Rodriguez HM
    J Biol Chem; 2017 Oct; 292(40):16571-16577. PubMed ID: 28808052
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.