BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 21504738)

  • 1. A multiscale dynamic model of DNA supercoil relaxation by topoisomerase IB.
    Lillian TD; Taranova M; Wereszczynski J; Andricioaei I; Perkins NC
    Biophys J; 2011 Apr; 100(8):2016-23. PubMed ID: 21504738
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Friction and torque govern the relaxation of DNA supercoils by eukaryotic topoisomerase IB.
    Koster DA; Croquette V; Dekker C; Shuman S; Dekker NH
    Nature; 2005 Mar; 434(7033):671-4. PubMed ID: 15800630
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Free energy calculations reveal rotating-ratchet mechanism for DNA supercoil relaxation by topoisomerase IB and its inhibition.
    Wereszczynski J; Andricioaei I
    Biophys J; 2010 Aug; 99(3):869-78. PubMed ID: 20682265
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single-Molecule Supercoil Relaxation Assay as a Screening Tool to Determine the Mechanism and Efficacy of Human Topoisomerase IB Inhibitors.
    Seol Y; Zhang H; Agama K; Lorence N; Pommier Y; Neuman KC
    Mol Cancer Ther; 2015 Nov; 14(11):2552-9. PubMed ID: 26351326
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Variola type IB DNA topoisomerase: DNA binding and supercoil unwinding using engineered DNA minicircles.
    Anderson BG; Stivers JT
    Biochemistry; 2014 Jul; 53(26):4302-15. PubMed ID: 24945825
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cellular strategies for regulating DNA supercoiling: a single-molecule perspective.
    Koster DA; Crut A; Shuman S; Bjornsti MA; Dekker NH
    Cell; 2010 Aug; 142(4):519-30. PubMed ID: 20723754
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The influence of salt on the structure and energetics of supercoiled DNA.
    Schlick T; Li B; Olson WK
    Biophys J; 1994 Dec; 67(6):2146-66. PubMed ID: 7696459
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chirality sensing by Escherichia coli topoisomerase IV and the mechanism of type II topoisomerases.
    Stone MD; Bryant Z; Crisona NJ; Smith SB; Vologodskii A; Bustamante C; Cozzarelli NR
    Proc Natl Acad Sci U S A; 2003 Jul; 100(15):8654-9. PubMed ID: 12857958
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chiral discrimination and writhe-dependent relaxation mechanism of human topoisomerase IIα.
    Seol Y; Gentry AC; Osheroff N; Neuman KC
    J Biol Chem; 2013 May; 288(19):13695-703. PubMed ID: 23508957
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rotation of DNA around intact strand in human topoisomerase I implies distinct mechanisms for positive and negative supercoil relaxation.
    Sari L; Andricioaei I
    Nucleic Acids Res; 2005; 33(20):6621-34. PubMed ID: 16314322
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A kinetic clutch governs religation by type IB topoisomerases and determines camptothecin sensitivity.
    Seol Y; Zhang H; Pommier Y; Neuman KC
    Proc Natl Acad Sci U S A; 2012 Oct; 109(40):16125-30. PubMed ID: 22991469
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Topoisomerase V relaxes supercoiled DNA by a constrained swiveling mechanism.
    Taneja B; Schnurr B; Slesarev A; Marko JF; Mondragón A
    Proc Natl Acad Sci U S A; 2007 Sep; 104(37):14670-5. PubMed ID: 17804808
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vaccinia DNA topoisomerase I: evidence supporting a free rotation mechanism for DNA supercoil relaxation.
    Stivers JT; Harris TK; Mildvan AS
    Biochemistry; 1997 Apr; 36(17):5212-22. PubMed ID: 9136883
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calf-thymus topoisomerase I equilibrates metastable secondary structure subsequent to relaxation of superhelical stress.
    Brewood GP; Delrow JJ; Schurr JM
    Biochemistry; 2010 Apr; 49(16):3367-80. PubMed ID: 20178373
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bacterial topoisomerase I and topoisomerase III relax supercoiled DNA via distinct pathways.
    Terekhova K; Gunn KH; Marko JF; Mondragón A
    Nucleic Acids Res; 2012 Nov; 40(20):10432-40. PubMed ID: 22923519
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preferential relaxation of positively supercoiled DNA by E. coli topoisomerase IV in single-molecule and ensemble measurements.
    Crisona NJ; Strick TR; Bensimon D; Croquette V; Cozzarelli NR
    Genes Dev; 2000 Nov; 14(22):2881-92. PubMed ID: 11090135
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Twist-writhe partitioning in a coarse-grained DNA minicircle model.
    Sayar M; Avşaroğlu B; Kabakçioğlu A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Apr; 81(4 Pt 1):041916. PubMed ID: 20481762
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tryptophane-205 of human topoisomerase I is essential for camptothecin inhibition of negative but not positive supercoil removal.
    Frøhlich RF; Veigaard C; Andersen FF; McClendon AK; Gentry AC; Andersen AH; Osheroff N; Stevnsner T; Knudsen BR
    Nucleic Acids Res; 2007; 35(18):6170-80. PubMed ID: 17827209
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assays for the preferential binding of human topoisomerase I to supercoiled DNA.
    Yang Z; Champoux JJ
    Methods Mol Biol; 2009; 582():49-57. PubMed ID: 19763941
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simulation of DNA Supercoil Relaxation.
    Ivenso ID; Lillian TD
    Biophys J; 2016 May; 110(10):2176-84. PubMed ID: 27224483
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.