These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 21504806)

  • 21. A review on recent advances in the applications of surface-enhanced Raman scattering in analytical chemistry.
    Fan M; Andrade GFS; Brolo AG
    Anal Chim Acta; 2020 Feb; 1097():1-29. PubMed ID: 31910948
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dual function surface-enhanced Raman active extractor for the detection of environmental contaminants.
    Bhandari D; Walworth MJ; Sepaniak MJ
    Appl Spectrosc; 2009 May; 63(5):571-8. PubMed ID: 19470216
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Silver nanoparticles self assembly as SERS substrates with near single molecule detection limit.
    Fan M; Brolo AG
    Phys Chem Chem Phys; 2009 Sep; 11(34):7381-9. PubMed ID: 19690709
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Optofluidic platforms based on surface-enhanced Raman scattering.
    Lim C; Hong J; Chung BG; deMello AJ; Choo J
    Analyst; 2010 May; 135(5):837-44. PubMed ID: 20419230
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cones fabricated by 3D nanoimprint lithography for highly sensitive surface enhanced Raman spectroscopy.
    Wu W; Hu M; Ou FS; Li Z; Williams RS
    Nanotechnology; 2010 Jun; 21(25):255502. PubMed ID: 20508315
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Novel bottom-up SERS substrates for quantitative and parallelized analytics.
    Strelau KK; Schüler T; Möller R; Fritzsche W; Popp J
    Chemphyschem; 2010 Feb; 11(2):394-8. PubMed ID: 20033977
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Quantitative SERS sensors for environmental analysis of naphthalene.
    Péron O; Rinnert E; Toury T; Lamy de la Chapelle M; Compère C
    Analyst; 2011 Mar; 136(5):1018-22. PubMed ID: 21165476
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nano-patterned SERS substrate: application for protein analysis vs. temperature.
    Das G; Mecarini F; Gentile F; De Angelis F; Mohan Kumar H; Candeloro P; Liberale C; Cuda G; Di Fabrizio E
    Biosens Bioelectron; 2009 Feb; 24(6):1693-9. PubMed ID: 18976899
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nanostructured surfaces and assemblies as SERS media.
    Ko H; Singamaneni S; Tsukruk VV
    Small; 2008 Oct; 4(10):1576-99. PubMed ID: 18844309
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Continuous fabrication of nanostructure arrays for flexible surface enhanced Raman scattering substrate.
    Zhang C; Yi P; Peng L; Lai X; Chen J; Huang M; Ni J
    Sci Rep; 2017 Jan; 7():39814. PubMed ID: 28051175
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Multilayer silver nanoparticles-modified optical fiber tip for high performance SERS remote sensing.
    Andrade GF; Fan M; Brolo AG
    Biosens Bioelectron; 2010 Jun; 25(10):2270-5. PubMed ID: 20353887
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fabrication of a Au nanoporous film by self-organization of networked ultrathin nanowires and its application as a surface-enhanced Raman scattering substrate for single-molecule detection.
    Liu R; Liu JF; Zhou XX; Sun MT; Jiang GB
    Anal Chem; 2011 Dec; 83(23):9131-7. PubMed ID: 22017457
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Optical aggregation of metal nanoparticles in a microfluidic channel for surface-enhanced Raman scattering analysis.
    Tong L; Righini M; Gonzalez MU; Quidant R; Käll M
    Lab Chip; 2009 Jan; 9(2):193-5. PubMed ID: 19107272
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Plasmonic substrates for surface enhanced Raman scattering.
    Li W; Zhao X; Yi Z; Glushenkov AM; Kong L
    Anal Chim Acta; 2017 Sep; 984():19-41. PubMed ID: 28843563
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [The applications of SERS to labeled immunoassay].
    Qiu LQ; Gu RA
    Guang Pu Xue Yu Guang Pu Fen Xi; 2004 May; 24(5):547-50. PubMed ID: 15769042
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Development of highly reproducible nanogap SERS substrates: comparative performance analysis and its application for glucose sensing.
    Dinish US; Yaw FC; Agarwal A; Olivo M
    Biosens Bioelectron; 2011 Jan; 26(5):1987-92. PubMed ID: 20869866
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Gold nanorod arrays with good reproducibility for high-performance surface-enhanced Raman scattering.
    Liao Q; Mu C; Xu DS; Ai XC; Yao JN; Zhang JP
    Langmuir; 2009 Apr; 25(8):4708-14. PubMed ID: 19366228
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Multiplexed microfluidic surface-enhanced Raman spectroscopy.
    Abu-Hatab NA; John JF; Oran JM; Sepaniak MJ
    Appl Spectrosc; 2007 Oct; 61(10):1116-22. PubMed ID: 17958963
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Spatially focused deposition of capillary electrophoresis effluent onto surface-enhanced Raman-active substrates for off-column spectroscopy.
    DeVault GL; Sepaniak MJ
    Electrophoresis; 2001 Jul; 22(11):2303-11. PubMed ID: 11504066
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.