BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 21504968)

  • 1. Alteration of negatively charged residues in the 89 to 99 domain of apoA-I affects lipid homeostasis and maturation of HDL.
    Kateifides AK; Gorshkova IN; Duka A; Chroni A; Kardassis D; Zannis VI
    J Lipid Res; 2011 Jul; 52(7):1363-72. PubMed ID: 21504968
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deletions of helices 2 and 3 of human apoA-I are associated with severe dyslipidemia following adenovirus-mediated gene transfer in apoA-I-deficient mice.
    Chroni A; Kan HY; Shkodrani A; Liu T; Zannis VI
    Biochemistry; 2005 Mar; 44(10):4108-17. PubMed ID: 15751988
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo studies of HDL assembly and metabolism using adenovirus-mediated transfer of ApoA-I mutants in ApoA-I-deficient mice.
    Reardon CA; Kan HY; Cabana V; Blachowicz L; Lukens JR; Wu Q; Liadaki K; Getz GS; Zannis VI
    Biochemistry; 2001 Nov; 40(45):13670-80. PubMed ID: 11695916
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Naturally occurring and bioengineered apoA-I mutations that inhibit the conversion of discoidal to spherical HDL: the abnormal HDL phenotypes can be corrected by treatment with LCAT.
    Koukos G; Chroni A; Duka A; Kardassis D; Zannis VI
    Biochem J; 2007 Aug; 406(1):167-74. PubMed ID: 17506726
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Substitutions of glutamate 110 and 111 in the middle helix 4 of human apolipoprotein A-I (apoA-I) by alanine affect the structure and in vitro functions of apoA-I and induce severe hypertriglyceridemia in apoA-I-deficient mice.
    Chroni A; Kan HY; Kypreos KE; Gorshkova IN; Shkodrani A; Zannis VI
    Biochemistry; 2004 Aug; 43(32):10442-57. PubMed ID: 15301543
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of the hydrophobic and charged residues in the 218-226 region of apoA-I in the biogenesis of HDL.
    Fotakis P; Kateifides AK; Gkolfinopoulou C; Georgiadou D; Beck M; Gründler K; Chroni A; Stratikos E; Kardassis D; Zannis VI
    J Lipid Res; 2013 Dec; 54(12):3281-92. PubMed ID: 23990662
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Significance of the hydrophobic residues 225-230 of apoA-I for the biogenesis of HDL.
    Fotakis P; Tiniakou I; Kateifides AK; Gkolfinopoulou C; Chroni A; Stratikos E; Zannis VI; Kardassis D
    J Lipid Res; 2013 Dec; 54(12):3293-302. PubMed ID: 24123812
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The central helices of ApoA-I can promote ATP-binding cassette transporter A1 (ABCA1)-mediated lipid efflux. Amino acid residues 220-231 of the wild-type ApoA-I are required for lipid efflux in vitro and high density lipoprotein formation in vivo.
    Chroni A; Liu T; Gorshkova I; Kan HY; Uehara Y; Von Eckardstein A; Zannis VI
    J Biol Chem; 2003 Feb; 278(9):6719-30. PubMed ID: 12488454
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The N-terminal globular domain and the first class A amphipathic helix of apolipoprotein A-I are important for lecithin:cholesterol acyltransferase activation and the maturation of high density lipoprotein in vivo.
    Scott BR; McManus DC; Franklin V; McKenzie AG; Neville T; Sparks DL; Marcel YL
    J Biol Chem; 2001 Dec; 276(52):48716-24. PubMed ID: 11602583
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The carboxy-terminal region of apoA-I is required for the ABCA1-dependent formation of alpha-HDL but not prebeta-HDL particles in vivo.
    Chroni A; Koukos G; Duka A; Zannis VI
    Biochemistry; 2007 May; 46(19):5697-708. PubMed ID: 17447731
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The roles of C-terminal helices of human apolipoprotein A-I in formation of high-density lipoprotein particles.
    Nagao K; Hata M; Tanaka K; Takechi Y; Nguyen D; Dhanasekaran P; Lund-Katz S; Phillips MC; Saito H
    Biochim Biophys Acta; 2014 Jan; 1841(1):80-7. PubMed ID: 24120703
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Point mutations in apolipoprotein A-I mimic the phenotype observed in patients with classical lecithin:cholesterol acyltransferase deficiency.
    Chroni A; Duka A; Kan HY; Liu T; Zannis VI
    Biochemistry; 2005 Nov; 44(43):14353-66. PubMed ID: 16245952
    [TBL] [Abstract][Full Text] [Related]  

  • 13. LCAT can rescue the abnormal phenotype produced by the natural ApoA-I mutations (Leu141Arg)Pisa and (Leu159Arg)FIN.
    Koukos G; Chroni A; Duka A; Kardassis D; Zannis VI
    Biochemistry; 2007 Sep; 46(37):10713-21. PubMed ID: 17711302
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of C-terminal α-helix hydrophobicity and aromatic amino acid content on apolipoprotein A-I functionality.
    Lyssenko NN; Hata M; Dhanasekaran P; Nickel M; Nguyen D; Chetty PS; Saito H; Lund-Katz S; Phillips MC
    Biochim Biophys Acta; 2012 Mar; 1821(3):456-63. PubMed ID: 21840419
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human ApoA-II inhibits the hydrolysis of HDL triglyceride and the decrease of HDL size induced by hypertriglyceridemia and cholesteryl ester transfer protein in transgenic mice.
    Zhong S; Goldberg IJ; Bruce C; Rubin E; Breslow JL; Tall A
    J Clin Invest; 1994 Dec; 94(6):2457-67. PubMed ID: 7989603
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure and stability of apolipoprotein a-I in solution and in discoidal high-density lipoprotein probed by double charge ablation and deletion mutation.
    Gorshkova IN; Liu T; Kan HY; Chroni A; Zannis VI; Atkinson D
    Biochemistry; 2006 Jan; 45(4):1242-54. PubMed ID: 16430220
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Apolipoprotein A-I configuration and cell cholesterol efflux activity of discoidal lipoproteins depend on the reconstitution process.
    Cuellar LÁ; Prieto ED; Cabaleiro LV; Garda HA
    Biochim Biophys Acta; 2014 Jan; 1841(1):180-9. PubMed ID: 24201377
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ABCA1 promotes the de novo biogenesis of apolipoprotein CIII-containing HDL particles in vivo and modulates the severity of apolipoprotein CIII-induced hypertriglyceridemia.
    Kypreos KE
    Biochemistry; 2008 Sep; 47(39):10491-502. PubMed ID: 18767813
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probing the pathways of chylomicron and HDL metabolism using adenovirus-mediated gene transfer.
    Zannis VI; Chroni A; Kypreos KE; Kan HY; Cesar TB; Zanni EE; Kardassis D
    Curr Opin Lipidol; 2004 Apr; 15(2):151-66. PubMed ID: 15017358
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dissociation of high density lipoprotein precursors from apolipoprotein B-containing lipoproteins in the presence of unesterified fatty acids and a source of apolipoprotein A-I.
    Musliner TA; Long MD; Forte TM; Nichols AV; Gong EL; Blanche PJ; Krauss RM
    J Lipid Res; 1991 Jun; 32(6):917-33. PubMed ID: 1940624
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.