These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
196 related articles for article (PubMed ID: 21505045)
1. Differential expression of small heat shock protein genes Hsp23 and Hsp40, and heat shock gene Hsr-omega in fruit flies (Drosophila melanogaster) along a microclimatic gradient. Carmel J; Rashkovetsky E; Nevo E; Korol A J Hered; 2011; 102(5):593-603. PubMed ID: 21505045 [TBL] [Abstract][Full Text] [Related]
2. Thermoprotection of synaptic transmission in a Drosophila heat shock factor mutant is accompanied by increased expression of Hsp83 and DnaJ-1. Neal SJ; Karunanithi S; Best A; So AK; Tanguay RM; Atwood HL; Westwood JT Physiol Genomics; 2006 May; 25(3):493-501. PubMed ID: 16595740 [TBL] [Abstract][Full Text] [Related]
3. [Evolution of the response to heat shock in genus Drosophila]. Garbuz DG; Molodtsov VB; Velikodvorskaia VV; Evgen'ev MB; Zatsepina OG Genetika; 2002 Aug; 38(8):1097-109. PubMed ID: 12244694 [TBL] [Abstract][Full Text] [Related]
4. Temporal expression of heat shock genes during cold stress and recovery from chill coma in adult Drosophila melanogaster. Colinet H; Lee SF; Hoffmann A FEBS J; 2010 Jan; 277(1):174-85. PubMed ID: 19968716 [TBL] [Abstract][Full Text] [Related]
5. Cellular damage as induced by high temperature is dependent on rate of temperature change - investigating consequences of ramping rates on molecular and organismal phenotypes in Drosophila melanogaster. Sørensen JG; Loeschcke V; Kristensen TN J Exp Biol; 2013 Mar; 216(Pt 5):809-14. PubMed ID: 23155086 [TBL] [Abstract][Full Text] [Related]
6. Adaptive differentiation of thermotolerance in Drosophila along a microclimatic gradient. Rashkovetsky E; Iliadi K; Michalak P; Lupu A; Nevo E; Feder ME; Korol A Heredity (Edinb); 2006 May; 96(5):353-9. PubMed ID: 16552433 [TBL] [Abstract][Full Text] [Related]
7. Two hsp23 genes in the Mediterranean fruit fly, Ceratitis capitata: structural characterization, heat shock regulation and developmental expression. Kokolakis G; Kritsidima M; Tkachenko T; Mintzas AC Insect Mol Biol; 2009 Apr; 18(2):171-81. PubMed ID: 19320758 [TBL] [Abstract][Full Text] [Related]
8. Evolvability of Hsp70 expression under artificial election for inducible thermotolerance in independent populations of Drosophila melanogaster. Feder ME; Bedford TB; Albright DR; Michalak P Physiol Biochem Zool; 2002; 75(4):325-34. PubMed ID: 12324888 [TBL] [Abstract][Full Text] [Related]
9. Rapid decline of cold tolerance at young age is associated with expression of stress genes in Drosophila melanogaster. Colinet H; Siaussat D; Bozzolan F; Bowler K J Exp Biol; 2013 Jan; 216(Pt 2):253-9. PubMed ID: 22996448 [TBL] [Abstract][Full Text] [Related]
10. Doxycycline-regulated over-expression of hsp22 has negative effects on stress resistance and life span in adult Drosophila melanogaster. Bhole D; Allikian MJ; Tower J Mech Ageing Dev; 2004 Sep; 125(9):651-63. PubMed ID: 15491684 [TBL] [Abstract][Full Text] [Related]
11. Abundant, diverse, and consequential P elements segregate in promoters of small heat-shock genes in Drosophila populations. Chen B; Walser JC; Rodgers TH; Sobota RS; Burke MK; Rose MR; Feder ME J Evol Biol; 2007 Sep; 20(5):2056-66. PubMed ID: 17714322 [TBL] [Abstract][Full Text] [Related]
12. Knockdown resistance to heat stress and slow recovery from chill coma are genetically associated in a quantitative trait locus region of chromosome 2 in Drosophila melanogaster. Norry FM; Gomez FH; Loeschcke V Mol Ecol; 2007 Aug; 16(15):3274-84. PubMed ID: 17651203 [TBL] [Abstract][Full Text] [Related]
13. Heat shock induces changes in the expression and binding of ubiquitin in senescent Drosophila melanogaster. Niedzwiecki A; Fleming JE Dev Genet; 1993; 14(1):78-86. PubMed ID: 7683258 [TBL] [Abstract][Full Text] [Related]
14. Genomic knockout of hsp23 both decreases and increases fitness under opposing thermal extremes in Drosophila melanogaster. Gu X; Chen W; Perry T; Batterham P; Hoffmann AA Insect Biochem Mol Biol; 2021 Dec; 139():103652. PubMed ID: 34562590 [TBL] [Abstract][Full Text] [Related]
15. Downregulation of hsp22 gene expression in Drosophila melanogaster from sites located near chemical plants. Magdalena LM; Coipan EC; Vladimirescu AF; Savu L; Costache M; Gavrila L Genet Mol Res; 2012 Mar; 11(1):739-45. PubMed ID: 22576832 [TBL] [Abstract][Full Text] [Related]
16. Heat shock gene expression during recovery after transient cold shock in Drosophila auraria (Diptera: Drosophilidae). Yiangou M; Tsapogas P; Nikolaidis N; Scouras ZG Cytobios; 1997; 92(369):91-8. PubMed ID: 9693879 [TBL] [Abstract][Full Text] [Related]
17. hsp23 and hsp26 exhibit distinct spatial and temporal patterns of constitutive expression in Drosophila adults. Marin R; Valet JP; Tanguay RM Dev Genet; 1993; 14(1):69-77. PubMed ID: 8482013 [TBL] [Abstract][Full Text] [Related]
18. Lifespan extension and elevated hsp gene expression in Drosophila caused by histone deacetylase inhibitors. Zhao Y; Sun H; Lu J; Li X; Chen X; Tao D; Huang W; Huang B J Exp Biol; 2005 Feb; 208(Pt 4):697-705. PubMed ID: 15695762 [TBL] [Abstract][Full Text] [Related]
19. Tissue-specific posttranslational modification of the small heat shock protein HSP27 in Drosophila. Marin R; Landry J; Tanguay RM Exp Cell Res; 1996 Feb; 223(1):1-8. PubMed ID: 8635480 [TBL] [Abstract][Full Text] [Related]
20. Knocking down expression of Hsp22 and Hsp23 by RNA interference affects recovery from chill coma in Drosophila melanogaster. Colinet H; Lee SF; Hoffmann A J Exp Biol; 2010 Dec; 213(Pt 24):4146-50. PubMed ID: 21112994 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]