These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
362 related articles for article (PubMed ID: 21505410)
1. Elastomeric PGS scaffolds in arterial tissue engineering. Lee KW; Wang Y J Vis Exp; 2011 Apr; (50):. PubMed ID: 21505410 [TBL] [Abstract][Full Text] [Related]
2. Physiologic compliance in engineered small-diameter arterial constructs based on an elastomeric substrate. Crapo PM; Wang Y Biomaterials; 2010 Mar; 31(7):1626-35. PubMed ID: 19962188 [TBL] [Abstract][Full Text] [Related]
3. Substantial expression of mature elastin in arterial constructs. Lee KW; Stolz DB; Wang Y Proc Natl Acad Sci U S A; 2011 Feb; 108(7):2705-10. PubMed ID: 21282618 [TBL] [Abstract][Full Text] [Related]
4. Hydrostatic pressure independently increases elastin and collagen co-expression in small-diameter engineered arterial constructs. Crapo PM; Wang Y J Biomed Mater Res A; 2011 Mar; 96(4):673-81. PubMed ID: 21268239 [TBL] [Abstract][Full Text] [Related]
5. Co-expression of elastin and collagen leads to highly compliant engineered blood vessels. Gao J; Crapo P; Nerem R; Wang Y J Biomed Mater Res A; 2008 Jun; 85(4):1120-8. PubMed ID: 18412137 [TBL] [Abstract][Full Text] [Related]
6. Microwave-assisted facile fabrication of porous poly (glycerol sebacate) scaffolds. Lee SH; Lee KW; Gade PS; Robertson AM; Wang Y J Biomater Sci Polym Ed; 2018; 29(7-9):907-916. PubMed ID: 28569644 [TBL] [Abstract][Full Text] [Related]
7. Seamless tubular poly(glycerol sebacate) scaffolds: high-yield fabrication and potential applications. Crapo PM; Gao J; Wang Y J Biomed Mater Res A; 2008 Aug; 86(2):354-63. PubMed ID: 17969024 [TBL] [Abstract][Full Text] [Related]
8. Effects of pulsatile bioreactor culture on vascular smooth muscle cells seeded on electrospun poly (lactide-co-ε-caprolactone) scaffold. Mun CH; Jung Y; Kim SH; Kim HC; Kim SH Artif Organs; 2013 Dec; 37(12):E168-78. PubMed ID: 23834728 [TBL] [Abstract][Full Text] [Related]
9. Poly (glycerol sebacate) elastomer supports bone regeneration by its mechanical properties being closer to osteoid tissue rather than to mature bone. Zaky SH; Lee KW; Gao J; Jensen A; Verdelis K; Wang Y; Almarza AJ; Sfeir C Acta Biomater; 2017 May; 54():95-106. PubMed ID: 28110067 [TBL] [Abstract][Full Text] [Related]
10. Fabrication and characterization of tough elastomeric fibrous scaffolds for tissue engineering applications. Sant S; Khademhosseini A Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():3546-8. PubMed ID: 21096824 [TBL] [Abstract][Full Text] [Related]
11. Slow degrading poly(glycerol sebacate) derivatives improve vascular graft remodeling in a rat carotid artery interposition model. Fu J; Ding X; Stowell CET; Wu YL; Wang Y Biomaterials; 2020 Oct; 257():120251. PubMed ID: 32738658 [TBL] [Abstract][Full Text] [Related]
12. Biomimetic poly(glycerol sebacate)/polycaprolactone blend scaffolds for cartilage tissue engineering. Liu Y; Tian K; Hao J; Yang T; Geng X; Zhang W J Mater Sci Mater Med; 2019 Apr; 30(5):53. PubMed ID: 31037512 [TBL] [Abstract][Full Text] [Related]
13. A biodegradable synthetic graft for small arteries matches the performance of autologous vein in rat carotid arteries. Lee KW; Gade PS; Dong L; Zhang Z; Aral AM; Gao J; Ding X; Stowell CET; Nisar MU; Kim K; Reinhardt DP; Solari MG; Gorantla VS; Robertson AM; Wang Y Biomaterials; 2018 Oct; 181():67-80. PubMed ID: 30077138 [TBL] [Abstract][Full Text] [Related]
14. Fabrication of a mechanically anisotropic poly(glycerol sebacate) membrane for tissue engineering. Hsu CN; Lee PY; Tuan-Mu HY; Li CY; Hu JJ J Biomed Mater Res B Appl Biomater; 2018 Feb; 106(2):760-770. PubMed ID: 28346743 [TBL] [Abstract][Full Text] [Related]
15. Poly(glycerol sebacate) supports the proliferation and phenotypic protein expression of primary baboon vascular cells. Gao J; Ensley AE; Nerem RM; Wang Y J Biomed Mater Res A; 2007 Dec; 83(4):1070-1075. PubMed ID: 17584900 [TBL] [Abstract][Full Text] [Related]
17. A dynamically cultured collagen/cells-incorporated elastic scaffold for small-diameter vascular grafts. Park IS; Kim YH; Jung Y; Kim SH; Kim SH J Biomater Sci Polym Ed; 2012; 23(14):1807-20. PubMed ID: 21943800 [TBL] [Abstract][Full Text] [Related]
18. Use of cyclic strain bioreactor for the upregulation of key tenocyte gene expression on Poly(glycerol-sebacate) (PGS) sheets. Deniz P; Guler S; Çelik E; Hosseinian P; Aydin HM Mater Sci Eng C Mater Biol Appl; 2020 Jan; 106():110293. PubMed ID: 31753347 [TBL] [Abstract][Full Text] [Related]
19. Design of Functional Electrospun Scaffolds Based on Poly(glycerol sebacate) Elastomer and Poly(lactic acid) for Cardiac Tissue Engineering. Flaig F; Ragot H; Simon A; Revet G; Kitsara M; Kitasato L; Hébraud A; Agbulut O; Schlatter G ACS Biomater Sci Eng; 2020 Apr; 6(4):2388-2400. PubMed ID: 33455317 [TBL] [Abstract][Full Text] [Related]
20. Highly elastic and suturable electrospun poly(glycerol sebacate) fibrous scaffolds. Jeffries EM; Allen RA; Gao J; Pesce M; Wang Y Acta Biomater; 2015 May; 18():30-9. PubMed ID: 25686558 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]