These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 21505419)

  • 1. Structural basis for endosomal recruitment of ESCRT-I by ESCRT-0 in yeast.
    Ren X; Hurley JH
    EMBO J; 2011 Jun; 30(11):2130-9. PubMed ID: 21505419
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vps27-Hse1 and ESCRT-I complexes cooperate to increase efficiency of sorting ubiquitinated proteins at the endosome.
    Bilodeau PS; Winistorfer SC; Kearney WR; Robertson AD; Piper RC
    J Cell Biol; 2003 Oct; 163(2):237-43. PubMed ID: 14581452
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural insights into endosomal sorting complex required for transport (ESCRT-I) recognition of ubiquitinated proteins.
    Teo H; Veprintsev DB; Williams RL
    J Biol Chem; 2004 Jul; 279(27):28689-96. PubMed ID: 15044434
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular architecture and functional model of the complete yeast ESCRT-I heterotetramer.
    Kostelansky MS; Schluter C; Tam YY; Lee S; Ghirlando R; Beach B; Conibear E; Hurley JH
    Cell; 2007 May; 129(3):485-98. PubMed ID: 17442384
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ESCRT-II, an endosome-associated complex required for protein sorting: crystal structure and interactions with ESCRT-III and membranes.
    Teo H; Perisic O; González B; Williams RL
    Dev Cell; 2004 Oct; 7(4):559-69. PubMed ID: 15469844
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural and functional organization of the ESCRT-I trafficking complex.
    Kostelansky MS; Sun J; Lee S; Kim J; Ghirlando R; Hierro A; Emr SD; Hurley JH
    Cell; 2006 Apr; 125(1):113-26. PubMed ID: 16615894
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pkh1/2-dependent phosphorylation of Vps27 regulates ESCRT-I recruitment to endosomes.
    Morvan J; Rinaldi B; Friant S
    Mol Biol Cell; 2012 Oct; 23(20):4054-64. PubMed ID: 22918958
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Binding of Substrates to the Central Pore of the Vps4 ATPase Is Autoinhibited by the Microtubule Interacting and Trafficking (MIT) Domain and Activated by MIT Interacting Motifs (MIMs).
    Han H; Monroe N; Votteler J; Shakya B; Sundquist WI; Hill CP
    J Biol Chem; 2015 May; 290(21):13490-9. PubMed ID: 25833946
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recruitment of the ESCRT machinery to a putative seven-transmembrane-domain receptor is mediated by an arrestin-related protein.
    Herrador A; Herranz S; Lara D; Vincent O
    Mol Cell Biol; 2010 Feb; 30(4):897-907. PubMed ID: 20028738
    [TBL] [Abstract][Full Text] [Related]  

  • 10. HIV-1 Gag release from yeast reveals ESCRT interaction with the Gag N-terminal protein region.
    Meusser B; Purfuerst B; Luft FC
    J Biol Chem; 2020 Dec; 295(52):17950-17972. PubMed ID: 32994219
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bro1 binding to Snf7 regulates ESCRT-III membrane scission activity in yeast.
    Wemmer M; Azmi I; West M; Davies B; Katzmann D; Odorizzi G
    J Cell Biol; 2011 Jan; 192(2):295-306. PubMed ID: 21263029
    [TBL] [Abstract][Full Text] [Related]  

  • 12. VHS domains of ESCRT-0 cooperate in high-avidity binding to polyubiquitinated cargo.
    Ren X; Hurley JH
    EMBO J; 2010 Mar; 29(6):1045-54. PubMed ID: 20150893
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vps27 recruits ESCRT machinery to endosomes during MVB sorting.
    Katzmann DJ; Stefan CJ; Babst M; Emr SD
    J Cell Biol; 2003 Aug; 162(3):413-23. PubMed ID: 12900393
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient cargo sorting by ESCRT-I and the subsequent release of ESCRT-I from multivesicular bodies requires the subunit Mvb12.
    Curtiss M; Jones C; Babst M
    Mol Biol Cell; 2007 Feb; 18(2):636-45. PubMed ID: 17135292
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure of the ESCRT-II endosomal trafficking complex.
    Hierro A; Sun J; Rusnak AS; Kim J; Prag G; Emr SD; Hurley JH
    Nature; 2004 Sep; 431(7005):221-5. PubMed ID: 15329733
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ESCRT-I core and ESCRT-II GLUE domain structures reveal role for GLUE in linking to ESCRT-I and membranes.
    Teo H; Gill DJ; Sun J; Perisic O; Veprintsev DB; Vallis Y; Emr SD; Williams RL
    Cell; 2006 Apr; 125(1):99-111. PubMed ID: 16615893
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conformational Changes in the Endosomal Sorting Complex Required for the Transport III Subunit Ist1 Lead to Distinct Modes of ATPase Vps4 Regulation.
    Tan J; Davies BA; Payne JA; Benson LM; Katzmann DJ
    J Biol Chem; 2015 Dec; 290(50):30053-65. PubMed ID: 26515066
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrated structural model and membrane targeting mechanism of the human ESCRT-II complex.
    Im YJ; Hurley JH
    Dev Cell; 2008 Jun; 14(6):902-13. PubMed ID: 18539118
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solution structure of the ESCRT-I complex by small-angle X-ray scattering, EPR, and FRET spectroscopy.
    Boura E; Rózycki B; Herrick DZ; Chung HS; Vecer J; Eaton WA; Cafiso DS; Hummer G; Hurley JH
    Proc Natl Acad Sci U S A; 2011 Jun; 108(23):9437-42. PubMed ID: 21596998
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The yeast Alix homolog Bro1 functions as a ubiquitin receptor for protein sorting into multivesicular endosomes.
    Pashkova N; Gakhar L; Winistorfer SC; Sunshine AB; Rich M; Dunham MJ; Yu L; Piper RC
    Dev Cell; 2013 Jun; 25(5):520-33. PubMed ID: 23726974
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.