These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
239 related articles for article (PubMed ID: 21505429)
1. Convergent evolution in biosynthesis of cyanogenic defence compounds in plants and insects. Jensen NB; Zagrobelny M; Hjernø K; Olsen CE; Houghton-Larsen J; Borch J; Møller BL; Bak S Nat Commun; 2011; 2():273. PubMed ID: 21505429 [TBL] [Abstract][Full Text] [Related]
2. 454 pyrosequencing based transcriptome analysis of Zygaena filipendulae with focus on genes involved in biosynthesis of cyanogenic glucosides. Zagrobelny M; Scheibye-Alsing K; Jensen NB; Møller BL; Gorodkin J; Bak S BMC Genomics; 2009 Dec; 10():574. PubMed ID: 19954531 [TBL] [Abstract][Full Text] [Related]
3. Evolution of the Biosynthetic Pathway for Cyanogenic Glucosides in Lepidoptera. Zagrobelny M; Jensen MK; Vogel H; Feyereisen R; Bak S J Mol Evol; 2018 Jul; 86(6):379-394. PubMed ID: 29974176 [TBL] [Abstract][Full Text] [Related]
4. Cyanogenic glucosides in the biological warfare between plants and insects: the Burnet moth-Birdsfoot trefoil model system. Zagrobelny M; Møller BL Phytochemistry; 2011 Sep; 72(13):1585-92. PubMed ID: 21429539 [TBL] [Abstract][Full Text] [Related]
5. Cyanogenesis in Arthropods: From Chemical Warfare to Nuptial Gifts. Zagrobelny M; de Castro ÉCP; Møller BL; Bak S Insects; 2018 May; 9(2):. PubMed ID: 29751568 [TBL] [Abstract][Full Text] [Related]
6. Cyanogenesis in plants and arthropods. Zagrobelny M; Bak S; Møller BL Phytochemistry; 2008 May; 69(7):1457-68. PubMed ID: 18353406 [TBL] [Abstract][Full Text] [Related]
7. Sequestration, tissue distribution and developmental transmission of cyanogenic glucosides in a specialist insect herbivore. Zagrobelny M; Olsen CE; Pentzold S; Fürstenberg-Hägg J; Jørgensen K; Bak S; Møller BL; Motawia MS Insect Biochem Mol Biol; 2014 Jan; 44():44-53. PubMed ID: 24269868 [TBL] [Abstract][Full Text] [Related]
8. Transcriptional regulation of de novo biosynthesis of cyanogenic glucosides throughout the life-cycle of the burnet moth Zygaena filipendulae (Lepidoptera). Fürstenberg-Hägg J; Zagrobelny M; Olsen CE; Jørgensen K; Møller BL; Bak S Insect Biochem Mol Biol; 2014 Jun; 49():80-9. PubMed ID: 24727026 [TBL] [Abstract][Full Text] [Related]
9. Genomic clustering of cyanogenic glucoside biosynthetic genes aids their identification in Lotus japonicus and suggests the repeated evolution of this chemical defence pathway. Takos AM; Knudsen C; Lai D; Kannangara R; Mikkelsen L; Motawia MS; Olsen CE; Sato S; Tabata S; Jørgensen K; Møller BL; Rook F Plant J; 2011 Oct; 68(2):273-86. PubMed ID: 21707799 [TBL] [Abstract][Full Text] [Related]
10. The cyanogenic glucoside composition of Zygaena filipendulae (Lepidoptera: Zygaenidae) as effected by feeding on wild-type and transgenic lotus populations with variable cyanogenic glucoside profiles. Zagrobelny M; Bak S; Ekstrøm CT; Olsen CE; Møller BL Insect Biochem Mol Biol; 2007 Jan; 37(1):10-8. PubMed ID: 17175442 [TBL] [Abstract][Full Text] [Related]
11. Chemical defense balanced by sequestration and de novo biosynthesis in a lepidopteran specialist. Fürstenberg-Hägg J; Zagrobelny M; Jørgensen K; Vogel H; Møller BL; Bak S PLoS One; 2014; 9(10):e108745. PubMed ID: 25299618 [TBL] [Abstract][Full Text] [Related]
12. Spatial separation of the cyanogenic β-glucosidase ZfBGD2 and cyanogenic glucosides in the haemolymph of Pentzold S; Jensen MK; Matthes A; Olsen CE; Petersen BL; Clausen H; Møller BL; Bak S; Zagrobelny M R Soc Open Sci; 2017 Jun; 4(6):170262. PubMed ID: 28680679 [TBL] [Abstract][Full Text] [Related]
14. Intimate roles for cyanogenic glucosides in the life cycle of Zygaena filipendulae (Lepidoptera, Zygaenidae). Zagrobelny M; Bak S; Olsen CE; Møller BL Insect Biochem Mol Biol; 2007 Nov; 37(11):1189-97. PubMed ID: 17916505 [TBL] [Abstract][Full Text] [Related]
15. Cytochrome P450-encoding genes from the Heliconius genome as candidates for cyanogenesis. Chauhan R; Jones R; Wilkinson P; Pauchet Y; Ffrench-Constant RH Insect Mol Biol; 2013 Oct; 22(5):532-40. PubMed ID: 23834845 [TBL] [Abstract][Full Text] [Related]
16. Cyanogenic glucosides and plant-insect interactions. Zagrobelny M; Bak S; Rasmussen AV; Jørgensen B; Naumann CM; Lindberg Møller B Phytochemistry; 2004 Feb; 65(3):293-306. PubMed ID: 14751300 [TBL] [Abstract][Full Text] [Related]
17. The presence of CYP79 homologues in glucosinolate-producing plants shows evolutionary conservation of the enzymes in the conversion of amino acid to aldoxime in the biosynthesis of cyanogenic glucosides and glucosinolates. Bak S; Nielsen HL; Halkier BA Plant Mol Biol; 1998 Nov; 38(5):725-34. PubMed ID: 9862490 [TBL] [Abstract][Full Text] [Related]
18. Biosynthesis of the nitrile glucosides rhodiocyanoside A and D and the cyanogenic glucosides lotaustralin and linamarin in Lotus japonicus. Forslund K; Morant M; Jørgensen B; Olsen CE; Asamizu E; Sato S; Tabata S; Bak S Plant Physiol; 2004 May; 135(1):71-84. PubMed ID: 15122013 [TBL] [Abstract][Full Text] [Related]
19. The dynamics of cyanide defences in the life cycle of an aposematic butterfly: Biosynthesis versus sequestration. Pinheiro de Castro ÉC; Demirtas R; Orteu A; Olsen CE; Motawie MS; Zikan Cardoso M; Zagrobelny M; Bak S Insect Biochem Mol Biol; 2020 Jan; 116():103259. PubMed ID: 31698083 [TBL] [Abstract][Full Text] [Related]
20. Cyanogenesis and the role of cyanogenic compounds in insects. Nahrstedt A Ciba Found Symp; 1988; 140():131-50. PubMed ID: 3073053 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]