These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 21505440)

  • 1. Size and mechanics effects in surface-induced melting of nanoparticles.
    Levitas VI; Samani K
    Nat Commun; 2011; 2():284. PubMed ID: 21505440
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coupled phase field, heat conduction, and elastodynamic simulations of kinetic superheating and nanoscale melting of aluminum nanolayer irradiated by picosecond laser.
    Hwang YS; Levitas VI
    Phys Chem Chem Phys; 2015 Dec; 17(47):31758-68. PubMed ID: 26561920
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface induced melting of long Al nanowires: phase field model and simulations for pressure loading and without it.
    Javanbakht M; Eskandari SS; Silani M
    Nanotechnology; 2022 Jul; 33(42):. PubMed ID: 35839666
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modes of surface premelting in colloidal crystals composed of attractive particles.
    Li B; Wang F; Zhou D; Peng Y; Ni R; Han Y
    Nature; 2016 Mar; 531(7595):485-8. PubMed ID: 26976448
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Size-dependent melting modes and behaviors of Ag nanoparticles: a molecular dynamics study.
    Liang T; Zhou D; Wu Z; Shi P
    Nanotechnology; 2017 Dec; 28(48):485704. PubMed ID: 29019463
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Superheating and melting within aluminum core-oxide shell nanoparticles for a broad range of heating rates: multiphysics phase field modeling.
    Hwang YS; Levitas VI
    Phys Chem Chem Phys; 2016 Oct; 18(41):28835-28853. PubMed ID: 27722318
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solid-solid phase transformation via internal stress-induced virtual melting, significantly below the melting temperature. Application to HMX energetic crystal.
    Levitas VI; Henson BF; Smilowitz LB; Asay BW
    J Phys Chem B; 2006 May; 110(20):10105-19. PubMed ID: 16706472
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theory of ice premelting in porous media.
    Hansen-Goos H; Wettlaufer JS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Mar; 81(3 Pt 1):031604. PubMed ID: 20365744
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nucleation and melting from nanovoids.
    Bai XM; Li M
    Nano Lett; 2006 Oct; 6(10):2284-9. PubMed ID: 17034098
    [TBL] [Abstract][Full Text] [Related]  

  • 10. LSPR study of the kinetics of the liquid-solid phase transition in Sn nanoparticles.
    Schwind M; Zhdanov VP; Zorić I; Kasemo B
    Nano Lett; 2010 Mar; 10(3):931-6. PubMed ID: 20108946
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Grain boundary-induced premelting and solid ↔ melt phase transformations: effect of interfacial widths and energies and triple junctions at the nanoscale.
    Basak A
    Phys Chem Chem Phys; 2021 Sep; 23(33):17953-17972. PubMed ID: 34382047
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Melting of micro/nanoparticles considering anisotropy of surface energy.
    Yang CM; Chen MW; Zheng GJ; Wang ZD
    Sci Rep; 2021 Sep; 11(1):19297. PubMed ID: 34588528
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Laser-induced shape transformation of gold nanoparticles below the melting point: the effect of surface melting.
    Inasawa S; Sugiyama M; Yamaguchi Y
    J Phys Chem B; 2005 Mar; 109(8):3104-11. PubMed ID: 16851329
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solid-solid phase transformation via virtual melting significantly below the melting temperature.
    Levitas VI; Henson BF; Smilowitz LB; Asay BW
    Phys Rev Lett; 2004 Jun; 92(23):235702. PubMed ID: 15245170
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Size- and dimensionality-dependent thermodynamic properties of ice nanocrystals.
    Han YY; Shuai J; Lu HM; Meng XK
    J Phys Chem B; 2012 Feb; 116(5):1651-4. PubMed ID: 22251366
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The strong influence of internal stresses on the nucleation of a nanosized, deeply undercooled melt at a solid-solid phase interface.
    Momeni K; Levitas VI; Warren JA
    Nano Lett; 2015 Apr; 15(4):2298-303. PubMed ID: 25789667
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Melting the ice: on the relation between melting temperature and size for nanoscale ice crystals.
    Pan D; Liu LM; Slater B; Michaelides A; Wang E
    ACS Nano; 2011 Jun; 5(6):4562-9. PubMed ID: 21568289
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phase-field modeling of grain-boundary premelting using obstacle potentials.
    Bhogireddy VS; Hüter C; Neugebauer J; Steinbach I; Karma A; Spatschek R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):012401. PubMed ID: 25122309
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct Imaging of Surface Melting on a Single Sn Nanoparticle.
    Kryshtal A; Bogatyrenko S; Khshanovska O
    Nano Lett; 2023 Jul; 23(14):6354-6359. PubMed ID: 37418684
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural disjoining potential for grain-boundary premelting and grain coalescence from molecular-dynamics simulations.
    Fensin SJ; Olmsted D; Buta D; Asta M; Karma A; Hoyt JJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Mar; 81(3 Pt 1):031601. PubMed ID: 20365741
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.