BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 21505662)

  • 1. Arsenic transformations in terrestrial small mammal food chains from contaminated sites in Canada.
    Saunders JR; Hough C; Knopper LD; Koch I; Reimer KJ
    J Environ Monit; 2011 Jun; 13(6):1784-92. PubMed ID: 21505662
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Arsenic transformations and biomarkers in meadow voles (Microtus pennsylvanicus) living on an abandoned gold mine site in Montague, Nova Scotia, Canada.
    Saunders JR; Knopper LD; Koch I; Reimer KJ
    Sci Total Environ; 2010 Jan; 408(4):829-35. PubMed ID: 19945142
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of biomarkers to show sub-cellular effects in meadow voles (Microtus pennsylvanicus) living on an abandoned gold mine site.
    Saunders JR; Knopper LD; Yagminas A; Koch I; Reimer KJ
    Sci Total Environ; 2009 Oct; 407(21):5548-54. PubMed ID: 19674772
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inclusion of soil arsenic bioaccessibility in ecological risk assessment and comparison with biological effects.
    Saunders JR; Knopper LD; Koch I; Reimer KJ
    Sci Total Environ; 2011 Dec; 412-413():132-7. PubMed ID: 22078367
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The distribution of arsenic in the body tissues of wood mice and bank voles.
    Erry BV; Macnair MR; Meharg AA; Shore RF
    Arch Environ Contam Toxicol; 2005 Nov; 49(4):569-76. PubMed ID: 16170450
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative study of arsenic toxicosis and ocular pathology in wild muskrats (Ondatra zibethicus) and red squirrels (Tamiasciurus hudsonicus) breeding in arsenic contaminated areas of Yellowknife, Northwest Territories (Canada).
    Amuno S; Bedos L; Kodzhahinchev V; Shekh K; Niyogi S; Grahn B
    Chemosphere; 2020 Jun; 248():126011. PubMed ID: 32028161
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioaccessibility and speciation of arsenic in country foods from contaminated sites in Canada.
    Koch I; Dee J; House K; Sui J; Zhang J; McKnight-Whitford A; Reimer KJ
    Sci Total Environ; 2013 Apr; 449():1-8. PubMed ID: 23403097
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatial and temporal trends of contaminants in terrestrial biota from the Canadian Arctic.
    Gamberg M; Braune B; Davey E; Elkin B; Hoekstra PF; Kennedy D; Macdonald C; Muir D; Nirwal A; Wayland M; Zeeb B
    Sci Total Environ; 2005 Dec; 351-352():148-64. PubMed ID: 16109438
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Arsenic speciation in plants growing in arsenic-contaminated sites.
    Ruiz-Chancho MJ; López-Sánchez JF; Schmeisser E; Goessler W; Francesconi KA; Rubio R
    Chemosphere; 2008 Apr; 71(8):1522-30. PubMed ID: 18179812
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temporal and geographic trends in trace element concentrations in moose from Yukon, Canada.
    Gamberg M; Palmer M; Roach P
    Sci Total Environ; 2005 Dec; 351-352():530-8. PubMed ID: 16143369
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An integrated health risk assessment approach to the study of mining sites contaminated with arsenic and lead.
    Jasso-Pineda Y; Espinosa-Reyes G; González-Mille D; Razo-Soto I; Carrizales L; Torres-Dosal A; Mejia-Saavedra J; Monroy M; Ize AI; Yarto M; Díaz-Barriga F
    Integr Environ Assess Manag; 2007 Jul; 3(3):344-50. PubMed ID: 17695107
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Geochemistry of redox-sensitive elements and sulfur isotopes in the high arsenic groundwater system of Datong Basin, China.
    Xie X; Ellis A; Wang Y; Xie Z; Duan M; Su C
    Sci Total Environ; 2009 Jun; 407(12):3823-35. PubMed ID: 19344934
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of accumulation, extractability, and metabolization of five different phenylarsenic compounds in plants by ion chromatography with mass spectrometric detection and by atomic emission spectroscopy.
    Schmidt AC; Kutschera K; Mattusch J; Otto M
    Chemosphere; 2008 Dec; 73(11):1781-7. PubMed ID: 18848716
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Arsenic speciation in river and estuarine waters from southwest Spain.
    Sánchez-Rodas D; Luis Gómez-Ariza J; Giráldez I; Velasco A; Morales E
    Sci Total Environ; 2005 Jun; 345(1-3):207-17. PubMed ID: 15919540
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Speciation analysis of arsenic in terrestrial plants from arsenic contaminated area.
    Jedynak L; Kowalska J; Harasimowicz J; Golimowski J
    Sci Total Environ; 2009 Jan; 407(2):945-52. PubMed ID: 18952257
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Seasonal variation in dietary and body organ arsenic concentrations in wood mice Apodemus sylvaticus and bank voles Clethrionomys glareolus.
    Erry BV; Macnair MR; Meharg AA; Shore RF
    Bull Environ Contam Toxicol; 1999 Nov; 63(5):567-74. PubMed ID: 10541674
    [No Abstract]   [Full Text] [Related]  

  • 17. Arsenic biotransformation in earthworms from contaminated soils.
    Button M; Jenkin GR; Harrington CF; Watts MJ
    J Environ Monit; 2009 Aug; 11(8):1484-91. PubMed ID: 19657532
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heavy metal (Cd, Pb, Zn) and metalloid (As) content in raptor species from Galicia (NW Spain).
    Pérez-López M; Hermoso de Mendoza M; López Beceiro A; Soler Rodríguez F
    Ecotoxicol Environ Saf; 2008 May; 70(1):154-62. PubMed ID: 17617459
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Field and laboratory arsenic speciation methods and their application to natural-water analysis.
    Bednar AJ; Garbarino JR; Burkhardt MR; Ranville JF; Wildeman TR
    Water Res; 2004 Jan; 38(2):355-64. PubMed ID: 14675647
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Occurrence of arsenic contamination in Canada: sources, behavior and distribution.
    Wang S; Mulligan CN
    Sci Total Environ; 2006 Aug; 366(2-3):701-21. PubMed ID: 16203025
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.