BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 21505877)

  • 1. Signal variation and its morphological correlates in Paramormyrops kingsleyae provide insight into the evolution of electrogenic signal diversity in mormyrid electric fish.
    Gallant JR; Arnegard ME; Sullivan JP; Carlson BA; Hopkins CD
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2011 Aug; 197(8):799-817. PubMed ID: 21505877
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic drift does not sufficiently explain patterns of electric signal variation among populations of the mormyrid electric fish Paramormyrops kingsleyae.
    Picq S; Sperling J; Cheng CJ; Carlson BA; Gallant JR
    Evolution; 2020 May; 74(5):911-935. PubMed ID: 32187650
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Petrocephalus of Odzala offer insights into evolutionary patterns of signal diversification in the Mormyridae, a family of weakly electrogenic fishes from Africa.
    Lavoué S; Arnegard ME; Sullivan JP; Hopkins CD
    J Physiol Paris; 2008; 102(4-6):322-39. PubMed ID: 18992333
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiple cases of striking genetic similarity between alternate electric fish signal morphs in sympatry.
    Arnegard ME; Bogdanowicz SM; Hopkins CD
    Evolution; 2005 Feb; 59(2):324-43. PubMed ID: 15807419
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The transcriptional correlates of divergent electric organ discharges in Paramormyrops electric fish.
    Losilla M; Luecke DM; Gallant JR
    BMC Evol Biol; 2020 Jan; 20(1):6. PubMed ID: 31918666
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular insights into the phylogeny of mormyriform fishes and the evolution of their electric organs.
    Alves-Gomes J; Hopkins CD
    Brain Behav Evol; 1997; 49(6):324-50. PubMed ID: 9167858
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Signal Diversification Is Associated with Corollary Discharge Evolution in Weakly Electric Fish.
    Fukutomi M; Carlson BA
    J Neurosci; 2020 Aug; 40(33):6345-6356. PubMed ID: 32661026
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electric signaling behavior and the mechanisms of electric organ discharge production in mormyrid fish.
    Carlson BA
    J Physiol Paris; 2002; 96(5-6):405-19. PubMed ID: 14692489
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differentiation of morphology, genetics and electric signals in a region of sympatry between sister species of African electric fish (Mormyridae).
    Lavoué S; Sullivan JP; Arnegard ME; Hopkins CD
    J Evol Biol; 2008 Jul; 21(4):1030-45. PubMed ID: 18513358
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intragenus (Campylomormyrus) and intergenus hybrids in mormyrid fish: Physiological and histological investigations of the electric organ ontogeny.
    Kirschbaum F; Nguyen L; Baumgartner S; Chi HWL; Wolfart R; Elarbani K; Eppenstein H; Korniienko Y; Guido-Böhm L; Mamonekene V; Vater M; Tiedemann R
    J Physiol Paris; 2016 Oct; 110(3 Pt B):281-301. PubMed ID: 28108418
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative histology of the adult electric organ among four species of the genus Campylomormyrus (Teleostei: Mormyridae).
    Paul C; Mamonekene V; Vater M; Feulner PG; Engelmann J; Tiedemann R; Kirschbaum F
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2015 Apr; 201(4):357-74. PubMed ID: 25752300
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrocyte physiology: 50 years later.
    Markham MR
    J Exp Biol; 2013 Jul; 216(Pt 13):2451-8. PubMed ID: 23761470
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Species differences in electric organs of mormyrids: substrates for species-typical electric organ discharge waveforms.
    Bass AH
    J Comp Neurol; 1986 Feb; 244(3):313-30. PubMed ID: 3958230
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrastructural features and hormone-dependent sex differences of mormyrid electric organs.
    Bass AH; Denizot JP; Marchaterre MA
    J Comp Neurol; 1986 Dec; 254(4):511-28. PubMed ID: 3805360
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sex recognition and neuronal coding of electric organ discharge waveform in the pulse-type weakly electric fish, Hypopomus occidentalis.
    Shumway CA; Zelick RD
    J Comp Physiol A; 1988 Aug; 163(4):465-78. PubMed ID: 3184009
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Discovery and phylogenetic analysis of a riverine species flock of African electric fishes (Mormyridae: Teleostei).
    Sullivan JP; Lavoué S; Hopkins CD
    Evolution; 2002 Mar; 56(3):597-616. PubMed ID: 11989689
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electric organ morphology of Sternopygus macrurus, a wave-type, weakly electric fish with a sexually dimorphic EOD.
    Mills A; Zakon HH; Marchaterre MA; Bass AH
    J Neurobiol; 1992 Sep; 23(7):920-32. PubMed ID: 1431851
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Time-domain signal divergence and discrimination without receptor modification in sympatric morphs of electric fishes.
    Arnegard ME; Jackson BS; Hopkins CD
    J Exp Biol; 2006 Jun; 209(Pt 11):2182-98. PubMed ID: 16709920
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proximate and ultimate causes of signal diversity in the electric fish Gymnotus.
    Crampton WG; Rodríguez-Cattáneo A; Lovejoy NR; Caputi AA
    J Exp Biol; 2013 Jul; 216(Pt 13):2523-41. PubMed ID: 23761477
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electroreceptor model of weakly electric fish Gnathonemus petersii: II. Cellular origin of inverse waveform tuning.
    Shuai J; Kashimori Y; Hoshino O; Kambara T; Emde G
    Biophys J; 1999 Jun; 76(6):3012-25. PubMed ID: 10354427
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.